File size: 9,772 Bytes
2252f3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
# Copyright (c) 2017-present, Facebook, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
##############################################################################
"""Functions for interacting with segmentation masks in the COCO format.
The following terms are used in this module
mask: a binary mask encoded as a 2D numpy array
segm: a segmentation mask in one of the two COCO formats (polygon or RLE)
polygon: COCO's polygon format
RLE: COCO's run length encoding format
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np
import pycocotools.mask as mask_util
def GetDensePoseMask(Polys):
MaskGen = np.zeros([256, 256])
for i in range(1, 15):
if (Polys[i - 1]):
current_mask = mask_util.decode(Polys[i - 1])
MaskGen[current_mask > 0] = i
return MaskGen
def flip_segms(segms, height, width):
"""Left/right flip each mask in a list of masks."""
def _flip_poly(poly, width):
flipped_poly = np.array(poly)
flipped_poly[0::2] = width - np.array(poly[0::2]) - 1
return flipped_poly.tolist()
def _flip_rle(rle, height, width):
if 'counts' in rle and type(rle['counts']) == list:
# Magic RLE format handling painfully discovered by looking at the
# COCO API showAnns function.
rle = mask_util.frPyObjects([rle], height, width)
mask = mask_util.decode(rle)
mask = mask[:, ::-1, :]
rle = mask_util.encode(np.array(mask, order='F', dtype=np.uint8))
return rle
flipped_segms = []
for segm in segms:
if type(segm) == list:
# Polygon format
flipped_segms.append([_flip_poly(poly, width) for poly in segm])
else:
# RLE format
assert type(segm) == dict
flipped_segms.append(_flip_rle(segm, height, width))
return flipped_segms
def polys_to_mask(polygons, height, width):
"""Convert from the COCO polygon segmentation format to a binary mask
encoded as a 2D array of data type numpy.float32. The polygon segmentation
is understood to be enclosed inside a height x width image. The resulting
mask is therefore of shape (height, width).
"""
rle = mask_util.frPyObjects(polygons, height, width)
mask = np.array(mask_util.decode(rle), dtype=np.float32)
# Flatten in case polygons was a list
mask = np.sum(mask, axis=2)
mask = np.array(mask > 0, dtype=np.float32)
return mask
def mask_to_bbox(mask):
"""Compute the tight bounding box of a binary mask."""
xs = np.where(np.sum(mask, axis=0) > 0)[0]
ys = np.where(np.sum(mask, axis=1) > 0)[0]
if len(xs) == 0 or len(ys) == 0:
return None
x0 = xs[0]
x1 = xs[-1]
y0 = ys[0]
y1 = ys[-1]
return np.array((x0, y0, x1, y1), dtype=np.float32)
def polys_to_mask_wrt_box(polygons, box, M):
"""Convert from the COCO polygon segmentation format to a binary mask
encoded as a 2D array of data type numpy.float32. The polygon segmentation
is understood to be enclosed in the given box and rasterized to an M x M
mask. The resulting mask is therefore of shape (M, M).
"""
w = box[2] - box[0]
h = box[3] - box[1]
w = np.maximum(w, 1)
h = np.maximum(h, 1)
polygons_norm = []
for poly in polygons:
p = np.array(poly, dtype=np.float32)
p[0::2] = (p[0::2] - box[0]) * M / w
p[1::2] = (p[1::2] - box[1]) * M / h
polygons_norm.append(p)
rle = mask_util.frPyObjects(polygons_norm, M, M)
mask = np.array(mask_util.decode(rle), dtype=np.float32)
# Flatten in case polygons was a list
mask = np.sum(mask, axis=2)
mask = np.array(mask > 0, dtype=np.float32)
return mask
def polys_to_boxes(polys):
"""Convert a list of polygons into an array of tight bounding boxes."""
boxes_from_polys = np.zeros((len(polys), 4), dtype=np.float32)
for i in range(len(polys)):
poly = polys[i]
x0 = min(min(p[::2]) for p in poly)
x1 = max(max(p[::2]) for p in poly)
y0 = min(min(p[1::2]) for p in poly)
y1 = max(max(p[1::2]) for p in poly)
boxes_from_polys[i, :] = [x0, y0, x1, y1]
return boxes_from_polys
def rle_mask_voting(top_masks, all_masks, all_dets, iou_thresh, binarize_thresh, method='AVG'):
"""Returns new masks (in correspondence with `top_masks`) by combining
multiple overlapping masks coming from the pool of `all_masks`. Two methods
for combining masks are supported: 'AVG' uses a weighted average of
overlapping mask pixels; 'UNION' takes the union of all mask pixels.
"""
if len(top_masks) == 0:
return
all_not_crowd = [False] * len(all_masks)
top_to_all_overlaps = mask_util.iou(top_masks, all_masks, all_not_crowd)
decoded_all_masks = [np.array(mask_util.decode(rle), dtype=np.float32) for rle in all_masks]
decoded_top_masks = [np.array(mask_util.decode(rle), dtype=np.float32) for rle in top_masks]
all_boxes = all_dets[:, :4].astype(np.int32)
all_scores = all_dets[:, 4]
# Fill box support with weights
mask_shape = decoded_all_masks[0].shape
mask_weights = np.zeros((len(all_masks), mask_shape[0], mask_shape[1]))
for k in range(len(all_masks)):
ref_box = all_boxes[k]
x_0 = max(ref_box[0], 0)
x_1 = min(ref_box[2] + 1, mask_shape[1])
y_0 = max(ref_box[1], 0)
y_1 = min(ref_box[3] + 1, mask_shape[0])
mask_weights[k, y_0:y_1, x_0:x_1] = all_scores[k]
mask_weights = np.maximum(mask_weights, 1e-5)
top_segms_out = []
for k in range(len(top_masks)):
# Corner case of empty mask
if decoded_top_masks[k].sum() == 0:
top_segms_out.append(top_masks[k])
continue
inds_to_vote = np.where(top_to_all_overlaps[k] >= iou_thresh)[0]
# Only matches itself
if len(inds_to_vote) == 1:
top_segms_out.append(top_masks[k])
continue
masks_to_vote = [decoded_all_masks[i] for i in inds_to_vote]
if method == 'AVG':
ws = mask_weights[inds_to_vote]
soft_mask = np.average(masks_to_vote, axis=0, weights=ws)
mask = np.array(soft_mask > binarize_thresh, dtype=np.uint8)
elif method == 'UNION':
# Any pixel that's on joins the mask
soft_mask = np.sum(masks_to_vote, axis=0)
mask = np.array(soft_mask > 1e-5, dtype=np.uint8)
else:
raise NotImplementedError('Method {} is unknown'.format(method))
rle = mask_util.encode(np.array(mask[:, :, np.newaxis], order='F'))[0]
top_segms_out.append(rle)
return top_segms_out
def rle_mask_nms(masks, dets, thresh, mode='IOU'):
"""Performs greedy non-maximum suppression based on an overlap measurement
between masks. The type of measurement is determined by `mode` and can be
either 'IOU' (standard intersection over union) or 'IOMA' (intersection over
mininum area).
"""
if len(masks) == 0:
return []
if len(masks) == 1:
return [0]
if mode == 'IOU':
# Computes ious[m1, m2] = area(intersect(m1, m2)) / area(union(m1, m2))
all_not_crowds = [False] * len(masks)
ious = mask_util.iou(masks, masks, all_not_crowds)
elif mode == 'IOMA':
# Computes ious[m1, m2] = area(intersect(m1, m2)) / min(area(m1), area(m2))
all_crowds = [True] * len(masks)
# ious[m1, m2] = area(intersect(m1, m2)) / area(m2)
ious = mask_util.iou(masks, masks, all_crowds)
# ... = max(area(intersect(m1, m2)) / area(m2),
# area(intersect(m2, m1)) / area(m1))
ious = np.maximum(ious, ious.transpose())
elif mode == 'CONTAINMENT':
# Computes ious[m1, m2] = area(intersect(m1, m2)) / area(m2)
# Which measures how much m2 is contained inside m1
all_crowds = [True] * len(masks)
ious = mask_util.iou(masks, masks, all_crowds)
else:
raise NotImplementedError('Mode {} is unknown'.format(mode))
scores = dets[:, 4]
order = np.argsort(-scores)
keep = []
while order.size > 0:
i = order[0]
keep.append(i)
ovr = ious[i, order[1:]]
inds_to_keep = np.where(ovr <= thresh)[0]
order = order[inds_to_keep + 1]
return keep
def rle_masks_to_boxes(masks):
"""Computes the bounding box of each mask in a list of RLE encoded masks."""
if len(masks) == 0:
return []
decoded_masks = [np.array(mask_util.decode(rle), dtype=np.float32) for rle in masks]
def get_bounds(flat_mask):
inds = np.where(flat_mask > 0)[0]
return inds.min(), inds.max()
boxes = np.zeros((len(decoded_masks), 4))
keep = [True] * len(decoded_masks)
for i, mask in enumerate(decoded_masks):
if mask.sum() == 0:
keep[i] = False
continue
flat_mask = mask.sum(axis=0)
x0, x1 = get_bounds(flat_mask)
flat_mask = mask.sum(axis=1)
y0, y1 = get_bounds(flat_mask)
boxes[i, :] = (x0, y0, x1, y1)
return boxes, np.where(keep)[0]
|