File size: 43,683 Bytes
2252f3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 |
# -*- coding: utf-8 -*-
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: ps-license@tuebingen.mpg.de
import numpy as np
import cv2
import pymeshlab
import torch
import torchvision
import trimesh
import json
from pytorch3d.io import load_obj
import os
from termcolor import colored
import os.path as osp
from scipy.spatial import cKDTree
import _pickle as cPickle
import open3d as o3d
from pytorch3d.structures import Meshes
import torch.nn.functional as F
# from lib.pymaf.utils.imutils import uncrop
# from lib.common.render_utils import Pytorch3dRasterizer, face_vertices
from pytorch3d.renderer.mesh import rasterize_meshes
from PIL import Image, ImageFont, ImageDraw
from kaolin.ops.mesh import check_sign
from kaolin.metrics.trianglemesh import point_to_mesh_distance
from pytorch3d.loss import (mesh_laplacian_smoothing, mesh_normal_consistency)
# import tinyobjloader
def rot6d_to_rotmat(x):
"""Convert 6D rotation representation to 3x3 rotation matrix.
Based on Zhou et al., "On the Continuity of Rotation Representations in Neural Networks", CVPR 2019
Input:
(B,6) Batch of 6-D rotation representations
Output:
(B,3,3) Batch of corresponding rotation matrices
"""
x = x.view(-1, 3, 2)
a1 = x[:, :, 0]
a2 = x[:, :, 1]
b1 = F.normalize(a1)
b2 = F.normalize(a2 - torch.einsum("bi,bi->b", b1, a2).unsqueeze(-1) * b1)
b3 = torch.cross(b1, b2)
return torch.stack((b1, b2, b3), dim=-1)
def obj_loader(path):
# Create reader.
reader = tinyobjloader.ObjReader()
# Load .obj(and .mtl) using default configuration
ret = reader.ParseFromFile(path)
if ret == False:
print("Failed to load : ", path)
return None
# note here for wavefront obj, #v might not equal to #vt, same as #vn.
attrib = reader.GetAttrib()
verts = np.array(attrib.vertices).reshape(-1, 3)
shapes = reader.GetShapes()
tri = shapes[0].mesh.numpy_indices().reshape(-1, 9)
faces = tri[:, [0, 3, 6]]
return verts, faces
class HoppeMesh:
def __init__(self, verts, faces):
'''
The HoppeSDF calculates signed distance towards a predefined oriented point cloud
http://hhoppe.com/recon.pdf
For clean and high-resolution pcl data, this is the fastest and accurate approximation of sdf
:param points: pts
:param normals: normals
'''
self.trimesh = trimesh.Trimesh(verts, faces, process=True)
self.verts = np.array(self.trimesh.vertices)
self.faces = np.array(self.trimesh.faces)
self.vert_normals, self.faces_normals = compute_normal(
self.verts, self.faces)
def contains(self, points):
labels = check_sign(
torch.as_tensor(self.verts).unsqueeze(0),
torch.as_tensor(self.faces),
torch.as_tensor(points).unsqueeze(0))
return labels.squeeze(0).numpy()
def triangles(self):
return self.verts[self.faces] # [n, 3, 3]
def tensor2variable(tensor, device):
# [1,23,3,3]
return torch.tensor(tensor, device=device, requires_grad=True)
class GMoF(torch.nn.Module):
def __init__(self, rho=1):
super(GMoF, self).__init__()
self.rho = rho
def extra_repr(self):
return 'rho = {}'.format(self.rho)
def forward(self, residual):
dist = torch.div(residual, residual + self.rho**2)
return self.rho**2 * dist
def mesh_edge_loss(meshes, target_length: float = 0.0):
"""
Computes mesh edge length regularization loss averaged across all meshes
in a batch. Each mesh contributes equally to the final loss, regardless of
the number of edges per mesh in the batch by weighting each mesh with the
inverse number of edges. For example, if mesh 3 (out of N) has only E=4
edges, then the loss for each edge in mesh 3 should be multiplied by 1/E to
contribute to the final loss.
Args:
meshes: Meshes object with a batch of meshes.
target_length: Resting value for the edge length.
Returns:
loss: Average loss across the batch. Returns 0 if meshes contains
no meshes or all empty meshes.
"""
if meshes.isempty():
return torch.tensor([0.0],
dtype=torch.float32,
device=meshes.device,
requires_grad=True)
N = len(meshes)
edges_packed = meshes.edges_packed() # (sum(E_n), 3)
verts_packed = meshes.verts_packed() # (sum(V_n), 3)
edge_to_mesh_idx = meshes.edges_packed_to_mesh_idx() # (sum(E_n), )
num_edges_per_mesh = meshes.num_edges_per_mesh() # N
# Determine the weight for each edge based on the number of edges in the
# mesh it corresponds to.
# TODO (nikhilar) Find a faster way of computing the weights for each edge
# as this is currently a bottleneck for meshes with a large number of faces.
weights = num_edges_per_mesh.gather(0, edge_to_mesh_idx)
weights = 1.0 / weights.float()
verts_edges = verts_packed[edges_packed]
v0, v1 = verts_edges.unbind(1)
loss = ((v0 - v1).norm(dim=1, p=2) - target_length)**2.0
loss_vertex = loss * weights
# loss_outlier = torch.topk(loss, 100)[0].mean()
# loss_all = (loss_vertex.sum() + loss_outlier.mean()) / N
loss_all = loss_vertex.sum() / N
return loss_all
def remesh(obj_path, perc, device):
ms = pymeshlab.MeshSet()
ms.load_new_mesh(obj_path)
ms.apply_coord_laplacian_smoothing()
ms.meshing_isotropic_explicit_remeshing(targetlen=pymeshlab.PercentageValue(perc), adaptive=True)
# ms.remeshing_isotropic_explicit_remeshing(
# targetlen=pymeshlab.Percentage(perc), adaptive=True)
ms.save_current_mesh(obj_path.replace("recon", "remesh"))
polished_mesh = trimesh.load_mesh(obj_path.replace("recon", "remesh"))
verts_pr = torch.tensor(
polished_mesh.vertices).float().unsqueeze(0).to(device)
faces_pr = torch.tensor(polished_mesh.faces).long().unsqueeze(0).to(device)
return verts_pr, faces_pr
def possion(mesh, obj_path):
mesh.export(obj_path)
ms = pymeshlab.MeshSet()
ms.load_new_mesh(obj_path)
ms.surface_reconstruction_screened_poisson(depth=10)
ms.set_current_mesh(1)
ms.save_current_mesh(obj_path)
return trimesh.load(obj_path)
def get_mask(tensor, dim):
mask = torch.abs(tensor).sum(dim=dim, keepdims=True) > 0.0
mask = mask.type_as(tensor)
return mask
def blend_rgb_norm(rgb, norm, mask):
# [0,0,0] or [127,127,127] should be marked as mask
final = rgb * (1 - mask) + norm * (mask)
return final.astype(np.uint8)
def unwrap(image, data):
img_uncrop = uncrop(
np.array(
Image.fromarray(image).resize(
data['uncrop_param']['box_shape'][:2])),
data['uncrop_param']['center'], data['uncrop_param']['scale'],
data['uncrop_param']['crop_shape'])
img_orig = cv2.warpAffine(img_uncrop,
np.linalg.inv(data['uncrop_param']['M'])[:2, :],
data['uncrop_param']['ori_shape'][::-1][1:],
flags=cv2.INTER_CUBIC)
return img_orig
# Losses to smooth / regularize the mesh shape
def update_mesh_shape_prior_losses(mesh, losses):
# and (b) the edge length of the predicted mesh
losses["edge"]['value'] = mesh_edge_loss(mesh)
# mesh normal consistency
losses["nc"]['value'] = mesh_normal_consistency(mesh)
# mesh laplacian smoothing
losses["laplacian"]['value'] = mesh_laplacian_smoothing(mesh,
method="uniform")
def rename(old_dict, old_name, new_name):
new_dict = {}
for key, value in zip(old_dict.keys(), old_dict.values()):
new_key = key if key != old_name else new_name
new_dict[new_key] = old_dict[key]
return new_dict
def load_checkpoint(model, cfg):
model_dict = model.state_dict()
main_dict = {}
normal_dict = {}
device = torch.device(f"cuda:{cfg['test_gpus'][0]}")
if os.path.exists(cfg.resume_path) and cfg.resume_path.endswith("ckpt"):
main_dict = torch.load(cfg.resume_path,
map_location=device)['state_dict']
main_dict = {
k: v
for k, v in main_dict.items()
if k in model_dict and v.shape == model_dict[k].shape and (
'reconEngine' not in k) and ("normal_filter" not in k) and (
'voxelization' not in k)
}
print(colored(f"Resume MLP weights from {cfg.resume_path}", 'green'))
if os.path.exists(cfg.normal_path) and cfg.normal_path.endswith("ckpt"):
normal_dict = torch.load(cfg.normal_path,
map_location=device)['state_dict']
for key in normal_dict.keys():
normal_dict = rename(normal_dict, key,
key.replace("netG", "netG.normal_filter"))
normal_dict = {
k: v
for k, v in normal_dict.items()
if k in model_dict and v.shape == model_dict[k].shape
}
print(colored(f"Resume normal model from {cfg.normal_path}", 'green'))
model_dict.update(main_dict)
model_dict.update(normal_dict)
model.load_state_dict(model_dict)
model.netG = model.netG.to(device)
model.reconEngine = model.reconEngine.to(device)
model.netG.training = False
model.netG.eval()
del main_dict
del normal_dict
del model_dict
return model
def read_smpl_constants(folder):
"""Load smpl vertex code"""
smpl_vtx_std = np.loadtxt(os.path.join(folder, 'vertices.txt'))
min_x = np.min(smpl_vtx_std[:, 0])
max_x = np.max(smpl_vtx_std[:, 0])
min_y = np.min(smpl_vtx_std[:, 1])
max_y = np.max(smpl_vtx_std[:, 1])
min_z = np.min(smpl_vtx_std[:, 2])
max_z = np.max(smpl_vtx_std[:, 2])
smpl_vtx_std[:, 0] = (smpl_vtx_std[:, 0] - min_x) / (max_x - min_x)
smpl_vtx_std[:, 1] = (smpl_vtx_std[:, 1] - min_y) / (max_y - min_y)
smpl_vtx_std[:, 2] = (smpl_vtx_std[:, 2] - min_z) / (max_z - min_z)
smpl_vertex_code = np.float32(np.copy(smpl_vtx_std))
"""Load smpl faces & tetrahedrons"""
smpl_faces = np.loadtxt(os.path.join(folder, 'faces.txt'),
dtype=np.int32) - 1
smpl_face_code = (smpl_vertex_code[smpl_faces[:, 0]] +
smpl_vertex_code[smpl_faces[:, 1]] +
smpl_vertex_code[smpl_faces[:, 2]]) / 3.0
smpl_tetras = np.loadtxt(os.path.join(folder, 'tetrahedrons.txt'),
dtype=np.int32) - 1
return smpl_vertex_code, smpl_face_code, smpl_faces, smpl_tetras
def surface_field_deformation(xyz, de_nn_verts, de_nn_normals, ori_nn_verts, ori_nn_normals):
'''
xyz: [B, N, 3]
de_nn_verts: [B, N, 3]
de_nn_normals: [B, N, 3]
ori_nn_verts: [B, N, 3]
ori_nn_normals: [B, N, 3]
'''
vector=xyz-de_nn_verts # [B, N, 3]
delta=torch.sum(vector*de_nn_normals, dim=-1, keepdim=True)*ori_nn_normals
ori_xyz=ori_nn_verts+delta
return ori_xyz # the deformed xyz
def feat_select(feat, select):
# feat [B, featx2, N]
# select [B, 1, N]
# return [B, feat, N]
dim = feat.shape[1] // 2
idx = torch.tile((1-select), (1, dim, 1))*dim + \
torch.arange(0, dim).unsqueeze(0).unsqueeze(2).type_as(select)
feat_select = torch.gather(feat, 1, idx.long())
return feat_select
def get_visibility_color(xy, z, faces):
"""get the visibility of vertices
Args:
xy (torch.tensor): [N,2]
z (torch.tensor): [N,1]
faces (torch.tensor): [N,3]
size (int): resolution of rendered image
"""
xyz = torch.cat((xy, -z), dim=1)
xyz = (xyz + 1.0) / 2.0
faces = faces.long()
rasterizer = Pytorch3dRasterizer(image_size=2**12)
meshes_screen = Meshes(verts=xyz[None, ...], faces=faces[None, ...])
raster_settings = rasterizer.raster_settings
pix_to_face, zbuf, bary_coords, dists = rasterize_meshes(
meshes_screen,
image_size=raster_settings.image_size,
blur_radius=raster_settings.blur_radius,
faces_per_pixel=raster_settings.faces_per_pixel,
bin_size=raster_settings.bin_size,
max_faces_per_bin=raster_settings.max_faces_per_bin,
perspective_correct=raster_settings.perspective_correct,
cull_backfaces=raster_settings.cull_backfaces,
)
vis_vertices_id = torch.unique(faces[torch.unique(pix_to_face), :])
vis_mask = torch.zeros(size=(z.shape[0], 1))
vis_mask[vis_vertices_id] = 1.0
# 新增的部分: 检测边缘像素
edge_mask = torch.zeros_like(pix_to_face)
offset=1
for i in range(-1-offset, 2+offset):
for j in range(-1-offset, 2+offset):
if i == 0 and j == 0:
continue
shifted = torch.roll(pix_to_face, shifts=(i,j), dims=(0,1))
edge_mask = torch.logical_or(edge_mask, shifted == -1)
# 更新可见性掩码
edge_faces = torch.unique(pix_to_face[edge_mask])
edge_vertices = torch.unique(faces[edge_faces])
vis_mask[edge_vertices] = 0.0
return vis_mask
def get_visibility(xy, z, faces):
"""get the visibility of vertices
Args:
xy (torch.tensor): [N,2]
z (torch.tensor): [N,1]
faces (torch.tensor): [N,3]
size (int): resolution of rendered image
"""
xyz = torch.cat((xy, -z), dim=1)
xyz = (xyz + 1.0) / 2.0
faces = faces.long()
rasterizer = Pytorch3dRasterizer(image_size=2**12)
meshes_screen = Meshes(verts=xyz[None, ...], faces=faces[None, ...])
raster_settings = rasterizer.raster_settings
pix_to_face, zbuf, bary_coords, dists = rasterize_meshes(
meshes_screen,
image_size=raster_settings.image_size,
blur_radius=raster_settings.blur_radius,
faces_per_pixel=raster_settings.faces_per_pixel,
bin_size=raster_settings.bin_size,
max_faces_per_bin=raster_settings.max_faces_per_bin,
perspective_correct=raster_settings.perspective_correct,
cull_backfaces=raster_settings.cull_backfaces,
)
vis_vertices_id = torch.unique(faces[torch.unique(pix_to_face), :])
vis_mask = torch.zeros(size=(z.shape[0], 1))
vis_mask[vis_vertices_id] = 1.0
# print("------------------------\n")
# print(f"keep points : {vis_mask.sum()/len(vis_mask)}")
return vis_mask
def barycentric_coordinates_of_projection(points, vertices):
''' https://github.com/MPI-IS/mesh/blob/master/mesh/geometry/barycentric_coordinates_of_projection.py
'''
"""Given a point, gives projected coords of that point to a triangle
in barycentric coordinates.
See
**Heidrich**, Computing the Barycentric Coordinates of a Projected Point, JGT 05
at http://www.cs.ubc.ca/~heidrich/Papers/JGT.05.pdf
:param p: point to project. [B, 3]
:param v0: first vertex of triangles. [B, 3]
:returns: barycentric coordinates of ``p``'s projection in triangle defined by ``q``, ``u``, ``v``
vectorized so ``p``, ``q``, ``u``, ``v`` can all be ``3xN``
"""
#(p, q, u, v)
v0, v1, v2 = vertices[:, 0], vertices[:, 1], vertices[:, 2]
p = points
q = v0
u = v1 - v0
v = v2 - v0
n = torch.cross(u, v)
s = torch.sum(n * n, dim=1)
# If the triangle edges are collinear, cross-product is zero,
# which makes "s" 0, which gives us divide by zero. So we
# make the arbitrary choice to set s to epsv (=numpy.spacing(1)),
# the closest thing to zero
s[s == 0] = 1e-6
oneOver4ASquared = 1.0 / s
w = p - q
b2 = torch.sum(torch.cross(u, w) * n, dim=1) * oneOver4ASquared
b1 = torch.sum(torch.cross(w, v) * n, dim=1) * oneOver4ASquared
weights = torch.stack((1 - b1 - b2, b1, b2), dim=-1)
# check barycenric weights
# p_n = v0*weights[:,0:1] + v1*weights[:,1:2] + v2*weights[:,2:3]
return weights
def cal_sdf_batch(verts, faces, cmaps, vis, points):
# verts [B, N_vert, 3]
# faces [B, N_face, 3]
# triangles [B, N_face, 3, 3]
# points [B, N_point, 3]
# cmaps [B, N_vert, 3]
Bsize = points.shape[0]
normals = Meshes(verts, faces).verts_normals_padded()
# SMPL has watertight mesh, but SMPL-X has two eyeballs and open mouth
# 1. remove eye_ball faces from SMPL-X: 9928-9383, 10474-9929
# 2. fill mouth holes with 30 more faces
if verts.shape[1] == 10475:
faces = faces[:, ~SMPLX().smplx_eyeball_fid_mask]
mouth_faces = torch.as_tensor(
SMPLX().smplx_mouth_fid).unsqueeze(0).repeat(Bsize, 1,
1).to(faces.device)
faces = torch.cat([faces, mouth_faces], dim=1)
triangles = face_vertices(verts, faces)
normals = face_vertices(normals, faces)
cmaps = face_vertices(cmaps, faces)
vis = face_vertices(vis, faces)
residues, pts_ind, _ = point_to_mesh_distance(points, triangles)
closest_triangles = torch.gather(
triangles, 1, pts_ind[:, :, None, None].expand(-1, -1, 3,
3)).view(-1, 3, 3)
closest_normals = torch.gather(
normals, 1, pts_ind[:, :, None, None].expand(-1, -1, 3,
3)).view(-1, 3, 3)
closest_cmaps = torch.gather(
cmaps, 1, pts_ind[:, :, None, None].expand(-1, -1, 3,
3)).view(-1, 3, 3)
closest_vis = torch.gather(vis, 1, pts_ind[:, :, None,
None].expand(-1, -1, 3,
1)).view(-1, 3, 1)
bary_weights = barycentric_coordinates_of_projection(
points.view(-1, 3), closest_triangles)
pts_cmap = (closest_cmaps * bary_weights[:, :, None]).sum(1).unsqueeze(0)
pts_vis = (closest_vis *
bary_weights[:, :, None]).sum(1).unsqueeze(0).ge(1e-1)
pts_norm = (closest_normals *
bary_weights[:, :, None]).sum(1).unsqueeze(0) * torch.tensor(
[-1.0, 1.0, -1.0]).type_as(normals)
pts_norm = F.normalize(pts_norm, dim=2)
pts_dist = torch.sqrt(residues) / torch.sqrt(torch.tensor(3))
pts_signs = 2.0 * (check_sign(verts, faces[0], points).float() - 0.5)
pts_sdf = (pts_dist * pts_signs).unsqueeze(-1)
return pts_sdf.view(Bsize, -1,
1), pts_norm.view(Bsize, -1, 3), pts_cmap.view(
Bsize, -1, 3), pts_vis.view(Bsize, -1, 1)
def orthogonal(points, calibrations, transforms=None):
'''
Compute the orthogonal projections of 3D points into the image plane by given projection matrix
:param points: [B, 3, N] Tensor of 3D points
:param calibrations: [B, 3, 4] Tensor of projection matrix
:param transforms: [B, 2, 3] Tensor of image transform matrix
:return: xyz: [B, 3, N] Tensor of xyz coordinates in the image plane
'''
rot = calibrations[:, :3, :3]
trans = calibrations[:, :3, 3:4]
pts = torch.baddbmm(trans, rot, points) # [B, 3, N]
if transforms is not None:
scale = transforms[:2, :2]
shift = transforms[:2, 2:3]
pts[:, :2, :] = torch.baddbmm(shift, scale, pts[:, :2, :])
return pts
def projection(points, calib):
if torch.is_tensor(points):
calib = torch.as_tensor(calib) if not torch.is_tensor(calib) else calib
return torch.mm(calib[:3, :3], points.T).T + calib[:3, 3]
else:
return np.matmul(calib[:3, :3], points.T).T + calib[:3, 3]
def load_calib(calib_path):
calib_data = np.loadtxt(calib_path, dtype=float)
extrinsic = calib_data[:4, :4]
intrinsic = calib_data[4:8, :4]
calib_mat = np.matmul(intrinsic, extrinsic)
calib_mat = torch.from_numpy(calib_mat).float()
return calib_mat
def load_obj_mesh_for_Hoppe(mesh_file):
vertex_data = []
face_data = []
if isinstance(mesh_file, str):
f = open(mesh_file, "r")
else:
f = mesh_file
for line in f:
if isinstance(line, bytes):
line = line.decode("utf-8")
if line.startswith('#'):
continue
values = line.split()
if not values:
continue
if values[0] == 'v':
v = list(map(float, values[1:4]))
vertex_data.append(v)
elif values[0] == 'f':
# quad mesh
if len(values) > 4:
f = list(map(lambda x: int(x.split('/')[0]), values[1:4]))
face_data.append(f)
f = list(
map(lambda x: int(x.split('/')[0]),
[values[3], values[4], values[1]]))
face_data.append(f)
# tri mesh
else:
f = list(map(lambda x: int(x.split('/')[0]), values[1:4]))
face_data.append(f)
vertices = np.array(vertex_data)
faces = np.array(face_data)
faces[faces > 0] -= 1
normals, _ = compute_normal(vertices, faces)
return vertices, normals, faces
def load_obj_mesh_with_color(mesh_file):
vertex_data = []
color_data = []
face_data = []
if isinstance(mesh_file, str):
f = open(mesh_file, "r")
else:
f = mesh_file
for line in f:
if isinstance(line, bytes):
line = line.decode("utf-8")
if line.startswith('#'):
continue
values = line.split()
if not values:
continue
if values[0] == 'v':
v = list(map(float, values[1:4]))
vertex_data.append(v)
c = list(map(float, values[4:7]))
color_data.append(c)
elif values[0] == 'f':
# quad mesh
if len(values) > 4:
f = list(map(lambda x: int(x.split('/')[0]), values[1:4]))
face_data.append(f)
f = list(
map(lambda x: int(x.split('/')[0]),
[values[3], values[4], values[1]]))
face_data.append(f)
# tri mesh
else:
f = list(map(lambda x: int(x.split('/')[0]), values[1:4]))
face_data.append(f)
vertices = np.array(vertex_data)
colors = np.array(color_data)
faces = np.array(face_data)
faces[faces > 0] -= 1
return vertices, colors, faces
def load_obj_mesh(mesh_file, with_normal=False, with_texture=False):
vertex_data = []
norm_data = []
uv_data = []
face_data = []
face_norm_data = []
face_uv_data = []
if isinstance(mesh_file, str):
f = open(mesh_file, "r")
else:
f = mesh_file
for line in f:
if isinstance(line, bytes):
line = line.decode("utf-8")
if line.startswith('#'):
continue
values = line.split()
if not values:
continue
if values[0] == 'v':
v = list(map(float, values[1:4]))
vertex_data.append(v)
elif values[0] == 'vn':
vn = list(map(float, values[1:4]))
norm_data.append(vn)
elif values[0] == 'vt':
vt = list(map(float, values[1:3]))
uv_data.append(vt)
elif values[0] == 'f':
# quad mesh
if len(values) > 4:
f = list(map(lambda x: int(x.split('/')[0]), values[1:4]))
face_data.append(f)
f = list(
map(lambda x: int(x.split('/')[0]),
[values[3], values[4], values[1]]))
face_data.append(f)
# tri mesh
else:
f = list(map(lambda x: int(x.split('/')[0]), values[1:4]))
face_data.append(f)
# deal with texture
if len(values[1].split('/')) >= 2:
# quad mesh
if len(values) > 4:
f = list(map(lambda x: int(x.split('/')[1]), values[1:4]))
face_uv_data.append(f)
f = list(
map(lambda x: int(x.split('/')[1]),
[values[3], values[4], values[1]]))
face_uv_data.append(f)
# tri mesh
elif len(values[1].split('/')[1]) != 0:
f = list(map(lambda x: int(x.split('/')[1]), values[1:4]))
face_uv_data.append(f)
# deal with normal
if len(values[1].split('/')) == 3:
# quad mesh
if len(values) > 4:
f = list(map(lambda x: int(x.split('/')[2]), values[1:4]))
face_norm_data.append(f)
f = list(
map(lambda x: int(x.split('/')[2]),
[values[3], values[4], values[1]]))
face_norm_data.append(f)
# tri mesh
elif len(values[1].split('/')[2]) != 0:
f = list(map(lambda x: int(x.split('/')[2]), values[1:4]))
face_norm_data.append(f)
vertices = np.array(vertex_data)
faces = np.array(face_data)
faces[faces > 0] -= 1
if with_texture and with_normal:
uvs = np.array(uv_data)
face_uvs = np.array(face_uv_data)
face_uvs[face_uvs > 0] -= 1
norms = np.array(norm_data)
if norms.shape[0] == 0:
norms, _ = compute_normal(vertices, faces)
face_normals = faces
else:
norms = normalize_v3(norms)
face_normals = np.array(face_norm_data)
face_normals[face_normals > 0] -= 1
return vertices, faces, norms, face_normals, uvs, face_uvs
if with_texture:
uvs = np.array(uv_data)
face_uvs = np.array(face_uv_data) - 1
return vertices, faces, uvs, face_uvs
if with_normal:
norms = np.array(norm_data)
norms = normalize_v3(norms)
face_normals = np.array(face_norm_data) - 1
return vertices, faces, norms, face_normals
return vertices, faces
def normalize_v3(arr):
''' Normalize a numpy array of 3 component vectors shape=(n,3) '''
lens = np.sqrt(arr[:, 0]**2 + arr[:, 1]**2 + arr[:, 2]**2)
eps = 0.00000001
lens[lens < eps] = eps
arr[:, 0] /= lens
arr[:, 1] /= lens
arr[:, 2] /= lens
return arr
def compute_normal(vertices, faces):
# Create a zeroed array with the same type and shape as our vertices i.e., per vertex normal
vert_norms = np.zeros(vertices.shape, dtype=vertices.dtype)
# Create an indexed view into the vertex array using the array of three indices for triangles
tris = vertices[faces]
# Calculate the normal for all the triangles, by taking the cross product of the vectors v1-v0, and v2-v0 in each triangle
face_norms = np.cross(tris[::, 1] - tris[::, 0], tris[::, 2] - tris[::, 0])
# n is now an array of normals per triangle. The length of each normal is dependent the vertices,
# we need to normalize these, so that our next step weights each normal equally.
normalize_v3(face_norms)
# now we have a normalized array of normals, one per triangle, i.e., per triangle normals.
# But instead of one per triangle (i.e., flat shading), we add to each vertex in that triangle,
# the triangles' normal. Multiple triangles would then contribute to every vertex, so we need to normalize again afterwards.
# The cool part, we can actually add the normals through an indexed view of our (zeroed) per vertex normal array
vert_norms[faces[:, 0]] += face_norms
vert_norms[faces[:, 1]] += face_norms
vert_norms[faces[:, 2]] += face_norms
normalize_v3(vert_norms)
return vert_norms, face_norms
def save_obj_mesh(mesh_path, verts, faces):
file = open(mesh_path, 'w')
for v in verts:
file.write('v %.4f %.4f %.4f\n' % (v[0], v[1], v[2]))
for f in faces:
f_plus = f + 1
file.write('f %d %d %d\n' % (f_plus[0], f_plus[1], f_plus[2]))
file.close()
def save_obj_mesh_with_color(mesh_path, verts, faces, colors):
file = open(mesh_path, 'w')
for idx, v in enumerate(verts):
c = colors[idx]
file.write('v %.4f %.4f %.4f %.4f %.4f %.4f\n' %
(v[0], v[1], v[2], c[0], c[1], c[2]))
for f in faces:
f_plus = f + 1
file.write('f %d %d %d\n' % (f_plus[0], f_plus[1], f_plus[2]))
file.close()
def calculate_mIoU(outputs, labels):
SMOOTH = 1e-6
outputs = outputs.int()
labels = labels.int()
intersection = (
outputs
& labels).float().sum() # Will be zero if Truth=0 or Prediction=0
union = (outputs | labels).float().sum() # Will be zzero if both are 0
iou = (intersection + SMOOTH) / (union + SMOOTH
) # We smooth our devision to avoid 0/0
thresholded = torch.clamp(
20 * (iou - 0.5), 0,
10).ceil() / 10 # This is equal to comparing with thresolds
return thresholded.mean().detach().cpu().numpy(
) # Or thresholded.mean() if you are interested in average across the batch
def mask_filter(mask, number=1000):
"""only keep {number} True items within a mask
Args:
mask (bool array): [N, ]
number (int, optional): total True item. Defaults to 1000.
"""
true_ids = np.where(mask)[0]
keep_ids = np.random.choice(true_ids, size=number)
filter_mask = np.isin(np.arange(len(mask)), keep_ids)
return filter_mask
def query_mesh(path):
verts, faces_idx, _ = load_obj(path)
return verts, faces_idx.verts_idx
def add_alpha(colors, alpha=0.7):
colors_pad = np.pad(colors, ((0, 0), (0, 1)),
mode='constant',
constant_values=alpha)
return colors_pad
def get_optim_grid_image(per_loop_lst, loss=None, nrow=4, type='smpl'):
font_path = os.path.join(os.path.dirname(__file__), "tbfo.ttf")
font = ImageFont.truetype(font_path, 30)
grid_img = torchvision.utils.make_grid(torch.cat(per_loop_lst, dim=0),
nrow=nrow)
grid_img = Image.fromarray(
((grid_img.permute(1, 2, 0).detach().cpu().numpy() + 1.0) * 0.5 *
255.0).astype(np.uint8))
# add text
draw = ImageDraw.Draw(grid_img)
grid_size = 512
if loss is not None:
draw.text((10, 5), f"error: {loss:.3f}", (255, 0, 0), font=font)
if type == 'smpl':
for col_id, col_txt in enumerate([
'image', 'smpl-norm(render)', 'cloth-norm(pred)', 'diff-norm',
'diff-mask'
]):
draw.text((10 + (col_id * grid_size), 5),
col_txt, (255, 0, 0),
font=font)
elif type == 'cloth':
for col_id, col_txt in enumerate(
['cloth-norm(recon)']):
draw.text((10 + (col_id * grid_size), 5),
col_txt, (255, 0, 0),
font=font)
for col_id, col_txt in enumerate(['0', '90', '180', '270']):
draw.text((10 + (col_id * grid_size), grid_size * 2 + 5),
col_txt, (255, 0, 0),
font=font)
else:
print(f"{type} should be 'smpl' or 'cloth'")
grid_img = grid_img.resize((grid_img.size[0], grid_img.size[1]),
Image.LANCZOS)
return grid_img
def clean_mesh(verts, faces):
device = verts.device
mesh_lst = trimesh.Trimesh(verts.detach().cpu().numpy(),
faces.detach().cpu().numpy())
mesh_lst = mesh_lst.split(only_watertight=False)
comp_num = [mesh.vertices.shape[0] for mesh in mesh_lst]
mesh_clean = mesh_lst[comp_num.index(max(comp_num))]
final_verts = torch.as_tensor(mesh_clean.vertices).float().to(device)
final_faces = torch.as_tensor(mesh_clean.faces).int().to(device)
return final_verts, final_faces
def merge_mesh(verts_A, faces_A, verts_B, faces_B, color=False):
sep_mesh = trimesh.Trimesh(np.concatenate([verts_A, verts_B], axis=0),
np.concatenate(
[faces_A, faces_B + faces_A.max() + 1],
axis=0),
maintain_order=True,
process=False)
if color:
colors = np.ones_like(sep_mesh.vertices)
colors[:verts_A.shape[0]] *= np.array([255.0, 0.0, 0.0])
colors[verts_A.shape[0]:] *= np.array([0.0, 255.0, 0.0])
sep_mesh.visual.vertex_colors = colors
# union_mesh = trimesh.boolean.union([trimesh.Trimesh(verts_A, faces_A),
# trimesh.Trimesh(verts_B, faces_B)], engine='blender')
return sep_mesh
def mesh_move(mesh_lst, step, scale=1.0):
trans = np.array([1.0, 0.0, 0.0]) * step
resize_matrix = trimesh.transformations.scale_and_translate(
scale=(scale), translate=trans)
results = []
for mesh in mesh_lst:
mesh.apply_transform(resize_matrix)
results.append(mesh)
return results
def rescale_smpl(fitted_path, scale=100, translate=(0, 0, 0)):
fitted_body = trimesh.load(fitted_path,
process=False,
maintain_order=True,
skip_materials=True)
resize_matrix = trimesh.transformations.scale_and_translate(
scale=(scale), translate=translate)
fitted_body.apply_transform(resize_matrix)
return np.array(fitted_body.vertices)
class SMPLX():
def __init__(self):
self.current_dir = "smpl_related" # new smplx file in ECON folder
self.smpl_verts_path = osp.join(self.current_dir,
"smpl_data/smpl_verts.npy")
self.smpl_faces_path = osp.join(self.current_dir,
"smpl_data/smpl_faces.npy")
self.smplx_verts_path = osp.join(self.current_dir,
"smpl_data/smplx_verts.npy")
self.smplx_faces_path = osp.join(self.current_dir,
"smpl_data/smplx_faces.npy")
self.cmap_vert_path = osp.join(self.current_dir,
"smpl_data/smplx_cmap.npy")
self.smplx_to_smplx_path = osp.join(self.current_dir,
"smpl_data/smplx_to_smpl.pkl")
self.smplx_eyeball_fid = osp.join(self.current_dir,
"smpl_data/eyeball_fid.npy")
self.smplx_fill_mouth_fid = osp.join(self.current_dir,
"smpl_data/fill_mouth_fid.npy")
self.smplx_faces = np.load(self.smplx_faces_path)
self.smplx_verts = np.load(self.smplx_verts_path)
self.smpl_verts = np.load(self.smpl_verts_path)
self.smpl_faces = np.load(self.smpl_faces_path)
self.smplx_eyeball_fid_mask = np.load(self.smplx_eyeball_fid)
self.smplx_mouth_fid = np.load(self.smplx_fill_mouth_fid)
self.smplx_to_smpl = cPickle.load(open(self.smplx_to_smplx_path, 'rb'))
self.model_dir = osp.join(self.current_dir, "models")
# self.tedra_dir = osp.join(self.current_dir, "../tedra_data")
# copy from econ
self.smplx_flame_vid_path = osp.join(
self.current_dir, "smpl_data/FLAME_SMPLX_vertex_ids.npy"
)
self.smplx_mano_vid_path = osp.join(self.current_dir, "smpl_data/MANO_SMPLX_vertex_ids.pkl")
# self.smpl_vert_seg_path = osp.join(
# osp.dirname(__file__), "../../lib/common/smpl_vert_segmentation.json"
# )
self.smpl_vert_seg_path = osp.join(self.current_dir, "smpl_vert_segmentation.json")
self.front_flame_path = osp.join(self.current_dir, "smpl_data/FLAME_face_mask_ids.npy")
self.smplx_vertex_lmkid_path = osp.join(
self.current_dir, "smpl_data/smplx_vertex_lmkid.npy"
)
self.smplx_vertex_lmkid = np.load(self.smplx_vertex_lmkid_path)
self.smpl_vert_seg = json.load(open(self.smpl_vert_seg_path))
self.smpl_mano_vid = np.concatenate(
[
self.smpl_vert_seg["rightHand"], self.smpl_vert_seg["rightHandIndex1"],
self.smpl_vert_seg["leftHand"], self.smpl_vert_seg["leftHandIndex1"]
]
)
self.smplx_mano_vid_dict = np.load(self.smplx_mano_vid_path, allow_pickle=True)
self.smplx_mano_vid = np.concatenate(
[self.smplx_mano_vid_dict["left_hand"], self.smplx_mano_vid_dict["right_hand"]]
)
self.smplx_flame_vid = np.load(self.smplx_flame_vid_path, allow_pickle=True)
self.smplx_front_flame_vid = self.smplx_flame_vid[np.load(self.front_flame_path)]
# hands
self.smplx_mano_vertex_mask = torch.zeros(self.smplx_verts.shape[0], ).index_fill_(
0, torch.tensor(self.smplx_mano_vid), 1.0
)
self.smpl_mano_vertex_mask = torch.zeros(self.smpl_verts.shape[0], ).index_fill_(
0, torch.tensor(self.smpl_mano_vid), 1.0
)
# face
self.front_flame_vertex_mask = torch.zeros(self.smplx_verts.shape[0], ).index_fill_(
0, torch.tensor(self.smplx_front_flame_vid), 1.0
)
self.eyeball_vertex_mask = torch.zeros(self.smplx_verts.shape[0], ).index_fill_(
0, torch.tensor(self.smplx_faces[self.smplx_eyeball_fid_mask].flatten()), 1.0
)
self.ghum_smpl_pairs = torch.tensor(
[
(0, 24), (2, 26), (5, 25), (7, 28), (8, 27), (11, 16), (12, 17), (13, 18), (14, 19),
(15, 20), (16, 21), (17, 39), (18, 44), (19, 36), (20, 41), (21, 35), (22, 40),
(23, 1), (24, 2), (25, 4), (26, 5), (27, 7), (28, 8), (29, 31), (30, 34), (31, 29),
(32, 32)
]
).long()
# smpl-smplx correspondence
self.smpl_joint_ids_24 = np.arange(22).tolist() + [68, 73]
self.smpl_joint_ids_24_pixie = np.arange(22).tolist() + [61 + 68, 72 + 68]
self.smpl_joint_ids_45 = np.arange(22).tolist() + [68, 73] + np.arange(55, 76).tolist()
self.extra_joint_ids = np.array(
[
61, 72, 66, 69, 58, 68, 57, 56, 64, 59, 67, 75, 70, 65, 60, 61, 63, 62, 76, 71, 72,
74, 73
]
)
self.extra_joint_ids += 68
self.smpl_joint_ids_45_pixie = (np.arange(22).tolist() + self.extra_joint_ids.tolist())
def cmap_smpl_vids(self, type):
# keys:
# closest_faces - [6890, 3] with smplx vert_idx
# bc - [6890, 3] with barycentric weights
cmap_smplx = torch.as_tensor(np.load(self.cmap_vert_path)).float()
if type == 'smplx':
return cmap_smplx
elif type == 'smpl':
bc = torch.as_tensor(self.smplx_to_smpl['bc'].astype(np.float32))
closest_faces = self.smplx_to_smpl['closest_faces'].astype(
np.int32)
cmap_smpl = torch.einsum('bij, bi->bj', cmap_smplx[closest_faces],
bc)
return cmap_smpl
# copy from ECON
def apply_face_mask(mesh, face_mask):
mesh.update_faces(face_mask)
mesh.remove_unreferenced_vertices()
return mesh
def apply_vertex_mask(mesh, vertex_mask):
faces_mask = vertex_mask[mesh.faces].any(dim=1)
mesh = apply_face_mask(mesh, faces_mask)
return mesh
def apply_vertex_face_mask(mesh, vertex_mask, face_mask):
faces_mask = vertex_mask[mesh.faces].any(dim=1) * torch.tensor(face_mask)
mesh.update_faces(faces_mask)
mesh.remove_unreferenced_vertices()
return mesh
def clean_floats(mesh):
thres = mesh.vertices.shape[0] * 1e-2
mesh_lst = mesh.split(only_watertight=False)
clean_mesh_lst = [mesh for mesh in mesh_lst if mesh.vertices.shape[0] > thres]
return sum(clean_mesh_lst)
def isin(input, test_elements):
# 扩展输入和测试元素的维度以进行广播
input = input.unsqueeze(-1)
test_elements = test_elements.unsqueeze(0)
# 比较两个张量的元素
comparison_result = torch.eq(input, test_elements)
# 沿着新添加的维度进行求和,以检查每个输入元素是否在测试元素中
isin_result = comparison_result.sum(-1).bool()
return isin_result
def part_removal(full_mesh, part_mesh, thres, device, smpl_obj, region, clean=True):
smpl_tree = cKDTree(smpl_obj.vertices)
SMPL_container = SMPLX()
from lib.dataset.PointFeat import ECON_PointFeat
part_extractor = ECON_PointFeat(
torch.tensor(part_mesh.vertices).unsqueeze(0).to(device),
torch.tensor(part_mesh.faces).unsqueeze(0).to(device)
)
(part_dist, _) = part_extractor.query(torch.tensor(full_mesh.vertices).unsqueeze(0).to(device))
remove_mask = part_dist < thres
if region == "hand":
_, idx = smpl_tree.query(full_mesh.vertices, k=1)
full_lmkid = SMPL_container.smplx_vertex_lmkid[idx]
remove_mask = torch.logical_and(
remove_mask,
torch.tensor(full_lmkid >= 20).type_as(remove_mask).unsqueeze(0)
)
elif region == "face":
_, idx = smpl_tree.query(full_mesh.vertices, k=5)
face_space_mask = isin(
torch.tensor(idx), torch.tensor(SMPL_container.smplx_front_flame_vid)
)
remove_mask = torch.logical_and(
remove_mask,
face_space_mask.any(dim=1).type_as(remove_mask).unsqueeze(0)
)
BNI_part_mask = ~(remove_mask).flatten()[full_mesh.faces].any(dim=1)
full_mesh.update_faces(BNI_part_mask.detach().cpu())
full_mesh.remove_unreferenced_vertices()
if clean:
full_mesh = clean_floats(full_mesh)
return full_mesh
def keep_largest(mesh):
mesh_lst = mesh.split(only_watertight=False)
keep_mesh = mesh_lst[0]
for mesh in mesh_lst:
if mesh.vertices.shape[0] > keep_mesh.vertices.shape[0]:
keep_mesh = mesh
return keep_mesh
def poisson(mesh, obj_path, depth=10, decimation=True):
pcd_path = obj_path[:-4] + "_soups.ply"
assert (mesh.vertex_normals.shape[1] == 3)
mesh.export(pcd_path)
pcl = o3d.io.read_point_cloud(pcd_path)
with o3d.utility.VerbosityContextManager(o3d.utility.VerbosityLevel.Error) as cm:
mesh, densities = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(
pcl, depth=depth, n_threads=6
)
# only keep the largest component
largest_mesh = keep_largest(trimesh.Trimesh(np.array(mesh.vertices), np.array(mesh.triangles)))
largest_mesh.export(obj_path)
if decimation:
# mesh decimation for faster rendering
low_res_mesh = largest_mesh.simplify_quadratic_decimation(50000)
return low_res_mesh
else:
return largest_mesh |