File size: 7,925 Bytes
2252f3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
# -*- coding: utf-8 -*-
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: ps-license@tuebingen.mpg.de
from lib.dataset.mesh_util import projection
from lib.common.render import Render
import numpy as np
import torch
import os.path as osp
from torchvision.utils import make_grid
from pytorch3d.io import IO
from pytorch3d.ops import sample_points_from_meshes
from pytorch3d.loss.point_mesh_distance import _PointFaceDistance
from pytorch3d.structures import Pointclouds
from PIL import Image
def point_mesh_distance(meshes, pcls):
if len(meshes) != len(pcls):
raise ValueError("meshes and pointclouds must be equal sized batches")
N = len(meshes)
# packed representation for pointclouds
points = pcls.points_packed() # (P, 3)
points_first_idx = pcls.cloud_to_packed_first_idx()
max_points = pcls.num_points_per_cloud().max().item()
# packed representation for faces
verts_packed = meshes.verts_packed()
faces_packed = meshes.faces_packed()
tris = verts_packed[faces_packed] # (T, 3, 3)
tris_first_idx = meshes.mesh_to_faces_packed_first_idx()
# point to face distance: shape (P,)
point_to_face = _PointFaceDistance.apply(points, points_first_idx, tris,
tris_first_idx, max_points, 5e-3)
# weight each example by the inverse of number of points in the example
point_to_cloud_idx = pcls.packed_to_cloud_idx() # (sum(P_i),)
num_points_per_cloud = pcls.num_points_per_cloud() # (N,)
weights_p = num_points_per_cloud.gather(0, point_to_cloud_idx)
weights_p = 1.0 / weights_p.float()
point_to_face = torch.sqrt(point_to_face) * weights_p
point_dist = point_to_face.sum() / N
return point_dist
class Evaluator:
def __init__(self, device):
self.render = Render(size=512, device=device)
self.device = device
def set_mesh(self, result_dict):
for k, v in result_dict.items():
setattr(self, k, v)
self.verts_pr -= self.recon_size / 2.0
self.verts_pr /= self.recon_size / 2.0
self.verts_gt = projection(self.verts_gt, self.calib)
self.verts_gt[:, 1] *= -1
self.src_mesh = self.render.VF2Mesh(self.verts_pr, self.faces_pr)
self.tgt_mesh = self.render.VF2Mesh(self.verts_gt, self.faces_gt)
def calculate_normal_consist(self, normal_path):
self.render.meshes = self.src_mesh
src_normal_imgs = self.render.get_rgb_image(cam_ids=[ 0,1,2, 3],
bg='black')
self.render.meshes = self.tgt_mesh
tgt_normal_imgs = self.render.get_rgb_image(cam_ids=[0,1,2, 3],
bg='black')
src_normal_arr = make_grid(torch.cat(src_normal_imgs, dim=0), nrow=4,padding=0) # [0,1]
tgt_normal_arr = make_grid(torch.cat(tgt_normal_imgs, dim=0), nrow=4,padding=0) # [0,1]
src_norm = torch.norm(src_normal_arr, dim=0, keepdim=True)
tgt_norm = torch.norm(tgt_normal_arr, dim=0, keepdim=True)
src_norm[src_norm == 0.0] = 1.0
tgt_norm[tgt_norm == 0.0] = 1.0
src_normal_arr /= src_norm
tgt_normal_arr /= tgt_norm
src_normal_arr = (src_normal_arr + 1.0) * 0.5
tgt_normal_arr = (tgt_normal_arr + 1.0) * 0.5
error = ((
(src_normal_arr - tgt_normal_arr)**2).sum(dim=0).mean()) * 4
#print('normal error:', error)
normal_img = Image.fromarray(
(torch.cat([src_normal_arr, tgt_normal_arr], dim=1).permute(
1, 2, 0).detach().cpu().numpy() * 255.0).astype(np.uint8))
normal_img.save(normal_path)
error_list = []
if len(src_normal_imgs) > 4:
for i in range(len(src_normal_imgs)):
src_normal_arr = src_normal_imgs[i] # Get each source normal image
tgt_normal_arr = tgt_normal_imgs[i] # Get corresponding target normal image
src_norm = torch.norm(src_normal_arr, dim=0, keepdim=True)
tgt_norm = torch.norm(tgt_normal_arr, dim=0, keepdim=True)
src_norm[src_norm == 0.0] = 1.0
tgt_norm[tgt_norm == 0.0] = 1.0
src_normal_arr /= src_norm
tgt_normal_arr /= tgt_norm
src_normal_arr = (src_normal_arr + 1.0) * 0.5
tgt_normal_arr = (tgt_normal_arr + 1.0) * 0.5
error = ((src_normal_arr - tgt_normal_arr) ** 2).sum(dim=0).mean() * 4.0
error_list.append(error)
return error_list
else:
src_normal_arr = make_grid(torch.cat(src_normal_imgs, dim=0), nrow=4,padding=0) # [0,1]
tgt_normal_arr = make_grid(torch.cat(tgt_normal_imgs, dim=0), nrow=4,padding=0) # [0,1]
src_norm = torch.norm(src_normal_arr, dim=0, keepdim=True)
tgt_norm = torch.norm(tgt_normal_arr, dim=0, keepdim=True)
src_norm[src_norm == 0.0] = 1.0
tgt_norm[tgt_norm == 0.0] = 1.0
src_normal_arr /= src_norm
tgt_normal_arr /= tgt_norm
# sim_mask = self.get_laplacian_2d(tgt_normal_arr).to(self.device)
src_normal_arr = (src_normal_arr + 1.0) * 0.5
tgt_normal_arr = (tgt_normal_arr + 1.0) * 0.5
error = ((
(src_normal_arr - tgt_normal_arr)**2).sum(dim=0).mean()) * 4
#print('normal error:', error)
return error
def export_mesh(self, dir, name):
IO().save_mesh(self.src_mesh, osp.join(dir, f"{name}_src.obj"))
IO().save_mesh(self.tgt_mesh, osp.join(dir, f"{name}_tgt.obj"))
def calculate_chamfer_p2s(self, num_samples=1000):
tgt_points = Pointclouds(
sample_points_from_meshes(self.tgt_mesh, num_samples))
src_points = Pointclouds(
sample_points_from_meshes(self.src_mesh, num_samples))
p2s_dist = point_mesh_distance(self.src_mesh, tgt_points) * 100.0
chamfer_dist = (point_mesh_distance(self.tgt_mesh, src_points) * 100.0
+ p2s_dist) * 0.5
return chamfer_dist, p2s_dist
def calc_acc(self, output, target, thres=0.5, use_sdf=False):
# # remove the surface points with thres
# non_surf_ids = (target != thres)
# output = output[non_surf_ids]
# target = target[non_surf_ids]
with torch.no_grad():
output = output.masked_fill(output < thres, 0.0)
output = output.masked_fill(output > thres, 1.0)
if use_sdf:
target = target.masked_fill(target < thres, 0.0)
target = target.masked_fill(target > thres, 1.0)
acc = output.eq(target).float().mean()
# iou, precison, recall
output = output > thres
target = target > thres
union = output | target
inter = output & target
_max = torch.tensor(1.0).to(output.device)
union = max(union.sum().float(), _max)
true_pos = max(inter.sum().float(), _max)
vol_pred = max(output.sum().float(), _max)
vol_gt = max(target.sum().float(), _max)
return acc, true_pos / union, true_pos / vol_pred, true_pos / vol_gt
|