File size: 8,183 Bytes
2252f3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
"""
Default config for PIXIE
"""
from yacs.config import CfgNode as CN
import argparse
import yaml
import os
cfg = CN()
abs_pixie_dir = os.path.abspath(
os.path.join(os.path.dirname(__file__), "..", "..", ".."))
cfg.pixie_dir = abs_pixie_dir
cfg.device = "cuda"
cfg.device_id = "0"
cfg.pretrained_modelpath = os.path.join("smpl_related/HPS/pixie_data",
"pixie_model.tar")
# smplx parameter settings
cfg.params = CN()
cfg.params.body_list = [
"body_cam", "global_pose", "partbody_pose", "neck_pose"
]
cfg.params.head_list = ["head_cam", "tex", "light"]
cfg.params.head_share_list = ["shape", "exp", "head_pose", "jaw_pose"]
cfg.params.hand_list = ["hand_cam"]
cfg.params.hand_share_list = [
"right_wrist_pose",
"right_hand_pose",
] # only for right hand
# ---------------------------------------------------------------------------- #
# Options for Body model
# ---------------------------------------------------------------------------- #
cfg.model = CN()
cfg.model.topology_path = os.path.join(cfg.pixie_dir, "smpl_related/HPS/pixie_data",
"SMPL_X_template_FLAME_uv.obj")
cfg.model.topology_smplxtex_path = os.path.join(cfg.pixie_dir,
"smpl_related/HPS/pixie_data",
"smplx_tex.obj")
cfg.model.topology_smplx_hand_path = os.path.join(cfg.pixie_dir,
"smpl_related/HPS/pixie_data",
"smplx_hand.obj")
cfg.model.smplx_model_path = os.path.join(cfg.pixie_dir, "smpl_related/HPS/pixie_data",
"SMPLX_NEUTRAL_2020.npz")
cfg.model.face_mask_path = os.path.join(cfg.pixie_dir, "smpl_related/HPS/pixie_data",
"uv_face_mask.png")
cfg.model.face_eye_mask_path = os.path.join(cfg.pixie_dir, "smpl_related/HPS/pixie_data",
"uv_face_eye_mask.png")
cfg.model.tex_path = os.path.join(cfg.pixie_dir, "smpl_related/HPS/pixie_data",
"FLAME_albedo_from_BFM.npz")
cfg.model.extra_joint_path = os.path.join(cfg.pixie_dir, "smpl_related/HPS/pixie_data",
"smplx_extra_joints.yaml")
cfg.model.j14_regressor_path = os.path.join(cfg.pixie_dir, "smpl_related/HPS/pixie_data",
"SMPLX_to_J14.pkl")
cfg.model.flame2smplx_cached_path = os.path.join(cfg.pixie_dir,
"smpl_related/HPS/pixie_data",
"flame2smplx_tex_1024.npy")
cfg.model.smplx_tex_path = os.path.join(cfg.pixie_dir, "smpl_related/HPS/pixie_data",
"smplx_tex.png")
cfg.model.mano_ids_path = os.path.join(cfg.pixie_dir, "smpl_related/HPS/pixie_data",
"MANO_SMPLX_vertex_ids.pkl")
cfg.model.flame_ids_path = os.path.join(cfg.pixie_dir, "smpl_related/HPS/pixie_data",
"SMPL-X__FLAME_vertex_ids.npy")
cfg.model.uv_size = 256
cfg.model.n_shape = 200
cfg.model.n_tex = 50
cfg.model.n_exp = 50
cfg.model.n_body_cam = 3
cfg.model.n_head_cam = 3
cfg.model.n_hand_cam = 3
cfg.model.tex_type = "BFM" # BFM, FLAME, albedoMM
cfg.model.uvtex_type = "SMPLX" # FLAME or SMPLX
cfg.model.use_tex = False # whether to use flame texture model
cfg.model.flame_tex_path = ""
# pose
cfg.model.n_global_pose = 3 * 2
cfg.model.n_head_pose = 3 * 2
cfg.model.n_neck_pose = 3 * 2
cfg.model.n_jaw_pose = 3 # euler angle
cfg.model.n_body_pose = 21 * 3 * 2
cfg.model.n_partbody_pose = (21 - 4) * 3 * 2
cfg.model.n_left_hand_pose = 15 * 3 * 2
cfg.model.n_right_hand_pose = 15 * 3 * 2
cfg.model.n_left_wrist_pose = 1 * 3 * 2
cfg.model.n_right_wrist_pose = 1 * 3 * 2
cfg.model.n_light = 27
cfg.model.check_pose = True
# ---------------------------------------------------------------------------- #
# Options for Dataset
# ---------------------------------------------------------------------------- #
cfg.dataset = CN()
cfg.dataset.source = ["body", "head", "hand"]
# head/face dataset
cfg.dataset.head = CN()
cfg.dataset.head.batch_size = 24
cfg.dataset.head.num_workers = 2
cfg.dataset.head.from_body = True
cfg.dataset.head.image_size = 224
cfg.dataset.head.image_hd_size = 224
cfg.dataset.head.scale_min = 1.8
cfg.dataset.head.scale_max = 2.2
cfg.dataset.head.trans_scale = 0.3
# body datset
cfg.dataset.body = CN()
cfg.dataset.body.batch_size = 24
cfg.dataset.body.num_workers = 2
cfg.dataset.body.image_size = 224
cfg.dataset.body.image_hd_size = 1024
cfg.dataset.body.use_hd = True
# hand datset
cfg.dataset.hand = CN()
cfg.dataset.hand.batch_size = 24
cfg.dataset.hand.num_workers = 2
cfg.dataset.hand.image_size = 224
cfg.dataset.hand.image_hd_size = 512
cfg.dataset.hand.scale_min = 2.2
cfg.dataset.hand.scale_max = 2.6
cfg.dataset.hand.trans_scale = 0.4
# ---------------------------------------------------------------------------- #
# Options for Network
# ---------------------------------------------------------------------------- #
cfg.network = CN()
cfg.network.encoder = CN()
cfg.network.encoder.body = CN()
cfg.network.encoder.body.type = "hrnet"
cfg.network.encoder.head = CN()
cfg.network.encoder.head.type = "resnet50"
cfg.network.encoder.hand = CN()
cfg.network.encoder.hand.type = "resnet50"
cfg.network.regressor = CN()
cfg.network.regressor.head_share = CN()
cfg.network.regressor.head_share.type = "mlp"
cfg.network.regressor.head_share.channels = [1024, 1024]
cfg.network.regressor.hand_share = CN()
cfg.network.regressor.hand_share.type = "mlp"
cfg.network.regressor.hand_share.channels = [1024, 1024]
cfg.network.regressor.body = CN()
cfg.network.regressor.body.type = "mlp"
cfg.network.regressor.body.channels = [1024]
cfg.network.regressor.head = CN()
cfg.network.regressor.head.type = "mlp"
cfg.network.regressor.head.channels = [1024]
cfg.network.regressor.hand = CN()
cfg.network.regressor.hand.type = "mlp"
cfg.network.regressor.hand.channels = [1024]
cfg.network.extractor = CN()
cfg.network.extractor.head_share = CN()
cfg.network.extractor.head_share.type = "mlp"
cfg.network.extractor.head_share.channels = []
cfg.network.extractor.left_hand_share = CN()
cfg.network.extractor.left_hand_share.type = "mlp"
cfg.network.extractor.left_hand_share.channels = []
cfg.network.extractor.right_hand_share = CN()
cfg.network.extractor.right_hand_share.type = "mlp"
cfg.network.extractor.right_hand_share.channels = []
cfg.network.moderator = CN()
cfg.network.moderator.head_share = CN()
cfg.network.moderator.head_share.detach_inputs = False
cfg.network.moderator.head_share.detach_feature = False
cfg.network.moderator.head_share.type = "temp-softmax"
cfg.network.moderator.head_share.channels = [1024, 1024]
cfg.network.moderator.head_share.reduction = 4
cfg.network.moderator.head_share.scale_type = "scalars"
cfg.network.moderator.head_share.scale_init = 1.0
cfg.network.moderator.hand_share = CN()
cfg.network.moderator.hand_share.detach_inputs = False
cfg.network.moderator.hand_share.detach_feature = False
cfg.network.moderator.hand_share.type = "temp-softmax"
cfg.network.moderator.hand_share.channels = [1024, 1024]
cfg.network.moderator.hand_share.reduction = 4
cfg.network.moderator.hand_share.scale_type = "scalars"
cfg.network.moderator.hand_share.scale_init = 0.0
def get_cfg_defaults():
"""Get a yacs CfgNode object with default values for my_project."""
# Return a clone so that the defaults will not be altered
# This is for the "local variable" use pattern
return cfg.clone()
def update_cfg(cfg, cfg_file):
# cfg.merge_from_file(cfg_file, allow_unsafe=True)
cfg.merge_from_file(cfg_file)
return cfg.clone()
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--cfg", type=str, help="cfg file path")
args = parser.parse_args()
cfg = get_cfg_defaults()
if args.cfg is not None:
cfg_file = args.cfg
cfg = update_cfg(cfg, args.cfg)
cfg.cfg_file = cfg_file
return cfg
|