File size: 6,704 Bytes
c6208fd 855986f 3c57e49 1fb2726 855986f 7bb79b2 d1cea68 5e42991 1fb2726 855986f d63b039 855986f 39c37ca d63b039 855986f 39c37ca d63b039 39c37ca d63b039 a98ca14 39c37ca 855986f 39c37ca d63b039 39c37ca ce18996 67aa81a 855986f d1cea68 855986f 67aa81a e1a1acd 67aa81a 855986f d63b039 c74a022 855986f d63b039 59299a4 855986f 59299a4 855986f 67aa81a 855986f 44ec107 855986f 6dd1fec 855986f 44ec107 c5993c6 c74a022 afa3edd 855986f e719472 855986f e719472 1941efa 572d3c8 1941efa 572d3c8 1941efa 855986f d63b039 855986f 820cfa8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
import torch
import os
import shutil
import tempfile
import gradio as gr
from PIL import Image
from rembg import remove
import sys
import uuid
import subprocess
from glob import glob
import requests
from huggingface_hub import snapshot_download
# Download models
os.makedirs("ckpts", exist_ok=True)
snapshot_download(
repo_id = "pengHTYX/PSHuman_Unclip_768_6views",
local_dir = "./ckpts"
)
os.makedirs("smpl_related", exist_ok=True)
snapshot_download(
repo_id = "fffiloni/PSHuman-SMPL-related",
local_dir = "./smpl_related"
)
# Folder containing example images
examples_folder = "examples"
# Retrieve all file paths in the folder
images_examples = [
os.path.join(examples_folder, file)
for file in os.listdir(examples_folder)
if os.path.isfile(os.path.join(examples_folder, file))
]
def remove_background(input_pil, remove_bg):
# Create a temporary folder for downloaded and processed images
temp_dir = tempfile.mkdtemp()
unique_id = str(uuid.uuid4())
image_path = os.path.join(temp_dir, f'input_image_{unique_id}.png')
try:
# Check if input_url is already a PIL Image
if isinstance(input_pil, Image.Image):
image = input_pil
else:
# Otherwise, assume it's a file path and open it
image = Image.open(input_pil)
# Flip the image horizontally
image = image.transpose(Image.FLIP_LEFT_RIGHT)
# Save the resized image
image.save(image_path)
except Exception as e:
shutil.rmtree(temp_dir)
raise gr.Error(f"Error downloading or saving the image: {str(e)}")
if remove_bg is True:
# Run background removal
removed_bg_path = os.path.join(temp_dir, f'output_image_rmbg_{unique_id}.png')
try:
img = Image.open(image_path)
result = remove(img)
result.save(removed_bg_path)
# Remove the input image to keep the temp directory clean
os.remove(image_path)
except Exception as e:
shutil.rmtree(temp_dir)
raise gr.Error(f"Error removing background: {str(e)}")
return removed_bg_path, temp_dir
else:
return image_path, temp_dir
def run_inference(temp_dir, removed_bg_path):
# Define the inference configuration
inference_config = "configs/inference-768-6view.yaml"
pretrained_model = "./ckpts"
crop_size = 740
seed = 600
num_views = 7
save_mode = "rgb"
try:
# Run the inference command
subprocess.run(
[
"python", "inference.py",
"--config", inference_config,
f"pretrained_model_name_or_path={pretrained_model}",
f"validation_dataset.crop_size={crop_size}",
f"with_smpl=false",
f"validation_dataset.root_dir={temp_dir}",
f"seed={seed}",
f"num_views={num_views}",
f"save_mode={save_mode}"
],
check=True
)
# Retrieve the file name without the extension
removed_bg_file_name = os.path.splitext(os.path.basename(removed_bg_path))[0]
output_videos = glob(os.path.join(f"out/{removed_bg_file_name}", "*.mp4"))
return output_videos
except subprocess.CalledProcessError as e:
return f"Error during inference: {str(e)}"
def process_image(input_pil, remove_bg):
torch.cuda.empty_cache()
# Remove background
result = remove_background(input_pil, remove_bg)
if isinstance(result, str) and result.startswith("Error"):
raise gr.Error(f"{result}") # Return the error message if something went wrong
removed_bg_path, temp_dir = result # Unpack only if successful
# Run inference
output_video = run_inference(temp_dir, removed_bg_path)
if isinstance(output_video, str) and output_video.startswith("Error"):
shutil.rmtree(temp_dir)
raise gr.Error(f"{output_video}") # Return the error message if inference failed
shutil.rmtree(temp_dir) # Cleanup temporary folder
print(output_video)
torch.cuda.empty_cache()
return output_video[0]
css="""
div#col-container{
margin: 0 auto;
max-width: 982px;
}
div#video-out-elm{
height: 323px;
}
"""
def gradio_interface():
with gr.Blocks(css=css) as app:
with gr.Column(elem_id="col-container"):
gr.Markdown("# PSHuman: Photorealistic Single-image 3D Human Reconstruction using Cross-Scale Multiview Diffusion and Explicit Remeshing")
gr.HTML("""
<div style="display:flex;column-gap:4px;">
<a href="https://github.com/pengHTYX/PSHuman">
<img src='https://img.shields.io/badge/GitHub-Repo-blue'>
</a>
<a href="https://penghtyx.github.io/PSHuman/">
<img src='https://img.shields.io/badge/Project-Page-green'>
</a>
<a href="https://arxiv.org/pdf/2409.10141">
<img src='https://img.shields.io/badge/ArXiv-Paper-red'>
</a>
<a href="https://huggingface.co/spaces/fffiloni/PSHuman?duplicate=true">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg" alt="Duplicate this Space">
</a>
<a href="https://huggingface.co/fffiloni">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/follow-me-on-HF-sm-dark.svg" alt="Follow me on HF">
</a>
</div>
""")
with gr.Group():
with gr.Row():
with gr.Column(scale=2):
input_image = gr.Image(
label="Image input",
type="pil",
image_mode="RGBA",
height=240
)
remove_bg = gr.Checkbox(label="Need to remove BG ?", value=False)
submit_button = gr.Button("Process")
output_video= gr.Video(label="Output Video", scale=4, elem_id="video-out-elm")
gr.Examples(
examples = examples_folder,
inputs = [input_image],
examples_per_page = 11
)
submit_button.click(process_image, inputs=[input_image, remove_bg], outputs=[output_video])
return app
# Launch the Gradio app
app = gradio_interface()
app.launch(show_api=False, show_error=True)
|