File size: 31,013 Bytes
2252f3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 |
"""Blender script to render images of 3D models.
This script is used to render images of 3D models. It takes in a list of paths
to .glb files and renders images of each model. The images are from rotating the
object around the origin. The images are saved to the output directory.
Example usage:
blender -b -P blender_script.py -- \
--object_path my_object.glb \
--output_dir ./views \
--engine CYCLES \
--scale 0.8 \
--num_images 12 \
--camera_dist 1.2
Here, input_model_paths.json is a json file containing a list of paths to .glb.
"""
import argparse
import json
import math
import os
import random
import sys
import time
import glob
import urllib.request
import uuid
from typing import Tuple
from mathutils import Vector, Matrix
os.environ["OPENCV_IO_ENABLE_OPENEXR"]="1"
# os.environ["CUDA_VISIBLE_DEVICES"] = "0"
import cv2
import numpy as np
from typing import Any, Callable, Dict, Generator, List, Literal, Optional, Set, Tuple
import bpy
from mathutils import Vector
import OpenEXR
import Imath
from PIL import Image
# import blenderproc as bproc
bpy.app.debug_value=256
parser = argparse.ArgumentParser()
parser.add_argument(
"--object_path",
type=str,
required=True,
help="Path to the object file",
)
parser.add_argument("--smpl_path", type=str, required=True, help="Path to the object file")
parser.add_argument("--output_dir", type=str, default="/views_whole_sphere-test2")
parser.add_argument(
"--engine", type=str, default="BLENDER_EEVEE", choices=["CYCLES", "BLENDER_EEVEE"]
)
parser.add_argument("--scale", type=float, default=1.0)
parser.add_argument("--num_images", type=int, default=8)
parser.add_argument("--random_images", type=int, default=3)
parser.add_argument("--random_ortho", type=int, default=1)
parser.add_argument("--device", type=str, default="CUDA")
parser.add_argument("--resolution", type=int, default=512)
argv = sys.argv[sys.argv.index("--") + 1 :]
args = parser.parse_args(argv)
print('===================', args.engine, '===================')
context = bpy.context
scene = context.scene
render = scene.render
cam = scene.objects["Camera"]
cam.data.type = 'ORTHO'
cam.data.ortho_scale = 1.
cam.data.lens = 35
cam.data.sensor_height = 32
cam.data.sensor_width = 32
cam_constraint = cam.constraints.new(type="TRACK_TO")
cam_constraint.track_axis = "TRACK_NEGATIVE_Z"
cam_constraint.up_axis = "UP_Y"
# setup lighting
# bpy.ops.object.light_add(type="AREA")
# light2 = bpy.data.lights["Area"]
# light2.energy = 3000
# bpy.data.objects["Area"].location[2] = 0.5
# bpy.data.objects["Area"].scale[0] = 100
# bpy.data.objects["Area"].scale[1] = 100
# bpy.data.objects["Area"].scale[2] = 100
render.engine = args.engine
render.image_settings.file_format = "PNG"
render.image_settings.color_mode = "RGBA"
render.resolution_x = args.resolution
render.resolution_y = args.resolution
render.resolution_percentage = 100
render.threads_mode = 'FIXED' # 使用固定线程数模式
render.threads = 32 # 设置线程数
scene.cycles.device = "GPU"
scene.cycles.samples = 128 # 128
scene.cycles.diffuse_bounces = 1
scene.cycles.glossy_bounces = 1
scene.cycles.transparent_max_bounces = 3 # 3
scene.cycles.transmission_bounces = 3 # 3
# scene.cycles.filter_width = 0.01
bpy.context.scene.cycles.adaptive_threshold = 0
scene.cycles.use_denoising = True
scene.render.film_transparent = True
bpy.context.preferences.addons["cycles"].preferences.get_devices()
# Set the device_type
bpy.context.preferences.addons["cycles"].preferences.compute_device_type = 'CUDA' # or "OPENCL"
bpy.context.scene.cycles.tile_size = 8192
# eevee = scene.eevee
# eevee.use_soft_shadows = True
# eevee.use_ssr = True
# eevee.use_ssr_refraction = True
# eevee.taa_render_samples = 64
# eevee.use_gtao = True
# eevee.gtao_distance = 1
# eevee.use_volumetric_shadows = True
# eevee.volumetric_tile_size = '2'
# eevee.gi_diffuse_bounces = 1
# eevee.gi_cubemap_resolution = '128'
# eevee.gi_visibility_resolution = '16'
# eevee.gi_irradiance_smoothing = 0
# for depth & normal
context.view_layer.use_pass_normal = True
context.view_layer.use_pass_z = True
context.scene.use_nodes = True
tree = bpy.context.scene.node_tree
nodes = bpy.context.scene.node_tree.nodes
links = bpy.context.scene.node_tree.links
# Clear default nodes
for n in nodes:
nodes.remove(n)
# # Create input render layer node.
render_layers = nodes.new('CompositorNodeRLayers')
scale_normal = nodes.new(type="CompositorNodeMixRGB")
scale_normal.blend_type = 'MULTIPLY'
scale_normal.inputs[2].default_value = (0.5, 0.5, 0.5, 1)
links.new(render_layers.outputs['Normal'], scale_normal.inputs[1])
bias_normal = nodes.new(type="CompositorNodeMixRGB")
bias_normal.blend_type = 'ADD'
bias_normal.inputs[2].default_value = (0.5, 0.5, 0.5, 0)
links.new(scale_normal.outputs[0], bias_normal.inputs[1])
normal_file_output = nodes.new(type="CompositorNodeOutputFile")
normal_file_output.label = 'Normal Output'
links.new(bias_normal.outputs[0], normal_file_output.inputs[0])
normal_file_output.format.file_format = "OPEN_EXR" # default is "PNG"
normal_file_output.format.color_mode = "RGB" # default is "BW"
depth_file_output = nodes.new(type="CompositorNodeOutputFile")
depth_file_output.label = 'Depth Output'
links.new(render_layers.outputs['Depth'], depth_file_output.inputs[0])
depth_file_output.format.file_format = "OPEN_EXR" # default is "PNG"
depth_file_output.format.color_mode = "RGB" # default is "BW"
def prepare_depth_outputs():
tree = bpy.context.scene.node_tree
links = tree.links
render_node = tree.nodes['Render Layers']
depth_out_node = tree.nodes.new(type="CompositorNodeOutputFile")
depth_map_node = tree.nodes.new(type="CompositorNodeMapRange")
depth_out_node.base_path = ''
depth_out_node.format.file_format = 'OPEN_EXR'
depth_out_node.format.color_depth = '32'
depth_map_node.inputs[1].default_value = 0.54
depth_map_node.inputs[2].default_value = 1.96
depth_map_node.inputs[3].default_value = 0
depth_map_node.inputs[4].default_value = 1
depth_map_node.use_clamp = True
links.new(render_node.outputs[2],depth_map_node.inputs[0])
links.new(depth_map_node.outputs[0], depth_out_node.inputs[0])
return depth_out_node, depth_map_node
depth_file_output, depth_map_node = prepare_depth_outputs()
def exr_to_png(exr_path):
depth_path = exr_path.replace('.exr', '.png')
exr_image = OpenEXR.InputFile(exr_path)
dw = exr_image.header()['dataWindow']
(width, height) = (dw.max.x - dw.min.x + 1, dw.max.y - dw.min.y + 1)
def read_exr(s, width, height):
mat = np.fromstring(s, dtype=np.float32)
mat = mat.reshape(height, width)
return mat
dmap, _, _ = [read_exr(s, width, height) for s in exr_image.channels('BGR', Imath.PixelType(Imath.PixelType.FLOAT))]
dmap = np.clip(np.asarray(dmap,np.float64),a_max=1.0, a_min=0.0) * 65535
dmap = Image.fromarray(dmap.astype(np.uint16))
dmap.save(depth_path)
exr_image.close()
# os.system('rm {}'.format(exr_path))
def extract_depth(directory):
fns = glob.glob(f'{directory}/*.exr')
for fn in fns: exr_to_png(fn)
os.system(f'rm {directory}/*.exr')
def sample_point_on_sphere(radius: float) -> Tuple[float, float, float]:
theta = random.random() * 2 * math.pi
phi = math.acos(2 * random.random() - 1)
return (
radius * math.sin(phi) * math.cos(theta),
radius * math.sin(phi) * math.sin(theta),
radius * math.cos(phi),
)
def sample_spherical(radius=3.0, maxz=3.0, minz=0.):
correct = False
while not correct:
vec = np.random.uniform(-1, 1, 3)
vec[2] = np.abs(vec[2])
vec = vec / np.linalg.norm(vec, axis=0) * radius
if maxz > vec[2] > minz:
correct = True
return vec
def sample_spherical(radius_min=1.5, radius_max=2.0, maxz=1.6, minz=-0.75):
correct = False
while not correct:
vec = np.random.uniform(-1, 1, 3)
# vec[2] = np.abs(vec[2])
radius = np.random.uniform(radius_min, radius_max, 1)
vec = vec / np.linalg.norm(vec, axis=0) * radius[0]
if maxz > vec[2] > minz:
correct = True
return vec
def randomize_camera():
elevation = random.uniform(0., 90.)
azimuth = random.uniform(0., 360)
distance = random.uniform(0.8, 1.6)
return set_camera_location(elevation, azimuth, distance)
def set_camera_location(elevation, azimuth, distance):
# from https://blender.stackexchange.com/questions/18530/
x, y, z = sample_spherical(radius_min=1.5, radius_max=2.2, maxz=2.2, minz=-2.2)
camera = bpy.data.objects["Camera"]
camera.location = x, y, z
direction = - camera.location
rot_quat = direction.to_track_quat('-Z', 'Y')
camera.rotation_euler = rot_quat.to_euler()
return camera
def set_camera_mvdream(azimuth, elevation, distance):
# theta, phi = np.deg2rad(azimuth), np.deg2rad(elevation)
azimuth, elevation = np.deg2rad(azimuth), np.deg2rad(elevation)
point = (
distance * math.cos(azimuth) * math.cos(elevation),
distance * math.sin(azimuth) * math.cos(elevation),
distance * math.sin(elevation),
)
camera = bpy.data.objects["Camera"]
camera.location = point
direction = -camera.location
rot_quat = direction.to_track_quat('-Z', 'Y')
camera.rotation_euler = rot_quat.to_euler()
return camera
def reset_scene() -> None:
"""Resets the scene to a clean state.
Returns:
None
"""
# delete everything that isn't part of a camera or a light
for obj in bpy.data.objects:
if obj.type not in {"CAMERA", "LIGHT"}:
bpy.data.objects.remove(obj, do_unlink=True)
# delete all the materials
for material in bpy.data.materials:
bpy.data.materials.remove(material, do_unlink=True)
# delete all the textures
for texture in bpy.data.textures:
bpy.data.textures.remove(texture, do_unlink=True)
# delete all the images
for image in bpy.data.images:
bpy.data.images.remove(image, do_unlink=True)
def process_ply(obj):
# obj = bpy.context.selected_objects[0]
# 创建一个新的材质
material = bpy.data.materials.new(name="VertexColors")
material.use_nodes = True
obj.data.materials.append(material)
# 获取材质的节点树
nodes = material.node_tree.nodes
links = material.node_tree.links
# 删除原有的'Principled BSDF'节点
principled_bsdf_node = nodes.get("Principled BSDF")
if principled_bsdf_node:
nodes.remove(principled_bsdf_node)
# 创建一个新的'Emission'节点
emission_node = nodes.new(type="ShaderNodeEmission")
emission_node.location = 0, 0
# 创建一个'Attribute'节点
attribute_node = nodes.new(type="ShaderNodeAttribute")
attribute_node.location = -300, 0
attribute_node.attribute_name = "Col" # 顶点颜色属性名称
# 创建一个'Output'节点
output_node = nodes.get("Material Output")
# 连接节点
links.new(attribute_node.outputs["Color"], emission_node.inputs["Color"])
links.new(emission_node.outputs["Emission"], output_node.inputs["Surface"])
# # load the glb model
# def load_object(object_path: str) -> None:
# if object_path.endswith(".glb"):
# bpy.ops.import_scene.gltf(filepath=object_path, merge_vertices=False)
# elif object_path.endswith(".fbx"):
# bpy.ops.import_scene.fbx(filepath=object_path)
# elif object_path.endswith(".obj"):
# bpy.ops.import_scene.obj(filepath=object_path)
# elif object_path.endswith(".ply"):
# bpy.ops.import_mesh.ply(filepath=object_path)
# obj = bpy.context.selected_objects[0]
# obj.rotation_euler[0] = 1.5708
# # bpy.ops.wm.ply_import(filepath=object_path, directory=os.path.dirname(object_path),forward_axis='X', up_axis='Y')
# process_ply(obj)
# else:
# raise ValueError(f"Unsupported file type: {object_path}")
def scene_bbox(
single_obj: Optional[bpy.types.Object] = None, ignore_matrix: bool = False
) -> Tuple[Vector, Vector]:
"""Returns the bounding box of the scene.
Taken from Shap-E rendering script
(https://github.com/openai/shap-e/blob/main/shap_e/rendering/blender/blender_script.py#L68-L82)
Args:
single_obj (Optional[bpy.types.Object], optional): If not None, only computes
the bounding box for the given object. Defaults to None.
ignore_matrix (bool, optional): Whether to ignore the object's matrix. Defaults
to False.
Raises:
RuntimeError: If there are no objects in the scene.
Returns:
Tuple[Vector, Vector]: The minimum and maximum coordinates of the bounding box.
"""
bbox_min = (math.inf,) * 3
bbox_max = (-math.inf,) * 3
found = False
for obj in get_scene_meshes() if single_obj is None else [single_obj]:
found = True
for coord in obj.bound_box:
coord = Vector(coord)
if not ignore_matrix:
coord = obj.matrix_world @ coord
bbox_min = tuple(min(x, y) for x, y in zip(bbox_min, coord))
bbox_max = tuple(max(x, y) for x, y in zip(bbox_max, coord))
if not found:
raise RuntimeError("no objects in scene to compute bounding box for")
return Vector(bbox_min), Vector(bbox_max)
def get_scene_root_objects() -> Generator[bpy.types.Object, None, None]:
"""Returns all root objects in the scene.
Yields:
Generator[bpy.types.Object, None, None]: Generator of all root objects in the
scene.
"""
for obj in bpy.context.scene.objects.values():
if not obj.parent:
yield obj
def get_scene_meshes() -> Generator[bpy.types.Object, None, None]:
"""Returns all meshes in the scene.
Yields:
Generator[bpy.types.Object, None, None]: Generator of all meshes in the scene.
"""
for obj in bpy.context.scene.objects.values():
if isinstance(obj.data, (bpy.types.Mesh)):
yield obj
# Build intrinsic camera parameters from Blender camera data
#
# See notes on this in
# blender.stackexchange.com/questions/15102/what-is-blenders-camera-projection-matrix-model
def get_calibration_matrix_K_from_blender(camd):
f_in_mm = camd.lens
scene = bpy.context.scene
resolution_x_in_px = scene.render.resolution_x
resolution_y_in_px = scene.render.resolution_y
scale = scene.render.resolution_percentage / 100
sensor_width_in_mm = camd.sensor_width
sensor_height_in_mm = camd.sensor_height
pixel_aspect_ratio = scene.render.pixel_aspect_x / scene.render.pixel_aspect_y
if (camd.sensor_fit == 'VERTICAL'):
# the sensor height is fixed (sensor fit is horizontal),
# the sensor width is effectively changed with the pixel aspect ratio
s_u = resolution_x_in_px * scale / sensor_width_in_mm / pixel_aspect_ratio
s_v = resolution_y_in_px * scale / sensor_height_in_mm
else: # 'HORIZONTAL' and 'AUTO'
# the sensor width is fixed (sensor fit is horizontal),
# the sensor height is effectively changed with the pixel aspect ratio
pixel_aspect_ratio = scene.render.pixel_aspect_x / scene.render.pixel_aspect_y
s_u = resolution_x_in_px * scale / sensor_width_in_mm
s_v = resolution_y_in_px * scale * pixel_aspect_ratio / sensor_height_in_mm
# Parameters of intrinsic calibration matrix K
alpha_u = f_in_mm * s_u
alpha_v = f_in_mm * s_v
u_0 = resolution_x_in_px * scale / 2
v_0 = resolution_y_in_px * scale / 2
skew = 0 # only use rectangular pixels
K = Matrix(
((alpha_u, skew, u_0),
( 0 , alpha_v, v_0),
( 0 , 0, 1 )))
return K
def get_calibration_matrix_K_from_blender_for_ortho(camd, ortho_scale):
scene = bpy.context.scene
resolution_x_in_px = scene.render.resolution_x
resolution_y_in_px = scene.render.resolution_y
scale = scene.render.resolution_percentage / 100
pixel_aspect_ratio = scene.render.pixel_aspect_x / scene.render.pixel_aspect_y
fx = resolution_x_in_px / ortho_scale
fy = resolution_y_in_px / ortho_scale / pixel_aspect_ratio
cx = resolution_x_in_px / 2
cy = resolution_y_in_px / 2
K = Matrix(
((fx, 0, cx),
(0, fy, cy),
(0 , 0, 1)))
return K
def get_3x4_RT_matrix_from_blender(cam):
bpy.context.view_layer.update()
location, rotation = cam.matrix_world.decompose()[0:2]
R = np.asarray(rotation.to_matrix())
t = np.asarray(location)
cam_rec = np.asarray([[1, 0, 0], [0, -1, 0], [0, 0, -1]], np.float32)
R = R.T
t = -R @ t
R_world2cv = cam_rec @ R
t_world2cv = cam_rec @ t
RT = np.concatenate([R_world2cv,t_world2cv[:,None]],1)
return RT
def delete_invisible_objects() -> None:
"""Deletes all invisible objects in the scene.
Returns:
None
"""
bpy.ops.object.select_all(action="DESELECT")
for obj in scene.objects:
if obj.hide_viewport or obj.hide_render:
obj.hide_viewport = False
obj.hide_render = False
obj.hide_select = False
obj.select_set(True)
bpy.ops.object.delete()
# Delete invisible collections
invisible_collections = [col for col in bpy.data.collections if col.hide_viewport]
for col in invisible_collections:
bpy.data.collections.remove(col)
def normalize_scene():
"""Normalizes the scene by scaling and translating it to fit in a unit cube centered
at the origin.
Mostly taken from the Point-E / Shap-E rendering script
(https://github.com/openai/point-e/blob/main/point_e/evals/scripts/blender_script.py#L97-L112),
but fix for multiple root objects: (see bug report here:
https://github.com/openai/shap-e/pull/60).
Returns:
None
"""
if len(list(get_scene_root_objects())) > 1:
print('we have more than one root objects!!')
# create an empty object to be used as a parent for all root objects
parent_empty = bpy.data.objects.new("ParentEmpty", None)
bpy.context.scene.collection.objects.link(parent_empty)
# parent all root objects to the empty object
for obj in get_scene_root_objects():
if obj != parent_empty:
obj.parent = parent_empty
bbox_min, bbox_max = scene_bbox()
dxyz = bbox_max - bbox_min
dist = np.sqrt(dxyz[0]**2+ dxyz[1]**2+dxyz[2]**2)
scale = 1 / dist
for obj in get_scene_root_objects():
obj.scale = obj.scale * scale
# Apply scale to matrix_world.
bpy.context.view_layer.update()
bbox_min, bbox_max = scene_bbox()
offset = -(bbox_min + bbox_max) / 2
for obj in get_scene_root_objects():
obj.matrix_world.translation += offset
bpy.ops.object.select_all(action="DESELECT")
# unparent the camera
bpy.data.objects["Camera"].parent = None
return scale, offset
def download_object(object_url: str) -> str:
"""Download the object and return the path."""
# uid = uuid.uuid4()
uid = object_url.split("/")[-1].split(".")[0]
tmp_local_path = os.path.join("tmp-objects", f"{uid}.glb" + ".tmp")
local_path = os.path.join("tmp-objects", f"{uid}.glb")
# wget the file and put it in local_path
os.makedirs(os.path.dirname(tmp_local_path), exist_ok=True)
urllib.request.urlretrieve(object_url, tmp_local_path)
os.rename(tmp_local_path, local_path)
# get the absolute path
local_path = os.path.abspath(local_path)
return local_path
def render_and_save(view_id, object_uid, len_val, azimuth, elevation, distance, ortho=False):
# print(view_id)
# render the image
render_path = os.path.join(args.output_dir, 'image', f"{view_id:03d}.png")
scene.render.filepath = render_path
if not ortho:
cam.data.lens = len_val
depth_map_node.inputs[1].default_value = distance - 1
depth_map_node.inputs[2].default_value = distance + 1
depth_file_output.base_path = os.path.join(args.output_dir, object_uid, 'depth')
depth_file_output.file_slots[0].path = f"{view_id:03d}"
normal_file_output.file_slots[0].path = f"{view_id:03d}"
if not os.path.exists(os.path.join(args.output_dir, 'normal', f"{view_id+1:03d}.png")):
bpy.ops.render.render(write_still=True)
if os.path.exists(os.path.join(args.output_dir, object_uid, 'depth', f"{view_id:03d}0001.exr")):
os.rename(os.path.join(args.output_dir, object_uid, 'depth', f"{view_id:03d}0001.exr"),
os.path.join(args.output_dir, object_uid, 'depth', f"{view_id:03d}.exr"))
if os.path.exists(os.path.join(args.output_dir, 'normal', f"{view_id:03d}0001.exr")):
normal = cv2.imread(os.path.join(args.output_dir, 'normal', f"{view_id:03d}0001.exr"), cv2.IMREAD_UNCHANGED)
normal_unit16 = (normal * 65535).astype(np.uint16)
cv2.imwrite(os.path.join(args.output_dir, 'normal', f"{view_id:03d}.png"), normal_unit16)
os.remove(os.path.join(args.output_dir, 'normal', f"{view_id:03d}0001.exr"))
# save camera KRT matrix
if ortho:
K = get_calibration_matrix_K_from_blender_for_ortho(cam.data, ortho_scale=cam.data.ortho_scale)
else:
K = get_calibration_matrix_K_from_blender(cam.data)
RT = get_3x4_RT_matrix_from_blender(cam)
para_path = os.path.join(args.output_dir, 'camera', f"{view_id:03d}.npy")
# np.save(RT_path, RT)
paras = {}
paras['intrinsic'] = np.array(K, np.float32)
paras['extrinsic'] = np.array(RT, np.float32)
paras['fov'] = cam.data.angle
paras['azimuth'] = azimuth
paras['elevation'] = elevation
paras['distance'] = distance
paras['focal'] = cam.data.lens
paras['sensor_width'] = cam.data.sensor_width
paras['near'] = distance - 1
paras['far'] = distance + 1
paras['camera'] = 'persp' if not ortho else 'ortho'
np.save(para_path, paras)
def render_and_save_smpl(view_id, object_uid, len_val, azimuth, elevation, distance, ortho=False):
if not ortho:
cam.data.lens = len_val
render_path = os.path.join(args.output_dir, 'smpl_image', f"{view_id:03d}.png")
scene.render.filepath = render_path
normal_file_output.file_slots[0].path = f"{view_id:03d}"
if not os.path.exists(os.path.join(args.output_dir, 'smpl_normal', f"{view_id:03d}.png")):
bpy.ops.render.render(write_still=True)
if os.path.exists(os.path.join(args.output_dir, 'smpl_normal', f"{view_id:03d}0001.exr")):
normal = cv2.imread(os.path.join(args.output_dir, 'smpl_normal', f"{view_id:03d}0001.exr"), cv2.IMREAD_UNCHANGED)
normal_unit16 = (normal * 65535).astype(np.uint16)
cv2.imwrite(os.path.join(args.output_dir, 'smpl_normal', f"{view_id:03d}.png"), normal_unit16)
os.remove(os.path.join(args.output_dir, 'smpl_normal', f"{view_id:03d}0001.exr"))
def scene_meshes():
for obj in bpy.context.scene.objects.values():
if isinstance(obj.data, (bpy.types.Mesh)):
yield obj
def load_object(object_path: str) -> None:
"""Loads a glb model into the scene."""
if object_path.endswith(".glb"):
bpy.ops.import_scene.gltf(filepath=object_path, merge_vertices=False)
elif object_path.endswith(".fbx"):
bpy.ops.import_scene.fbx(filepath=object_path)
elif object_path.endswith(".obj"):
bpy.ops.import_scene.obj(filepath=object_path)
obj = bpy.context.selected_objects[0]
obj.rotation_euler[0] = 6.28319
# obj.rotation_euler[2] = 1.5708
elif object_path.endswith(".ply"):
bpy.ops.import_mesh.ply(filepath=object_path)
obj = bpy.context.selected_objects[0]
obj.rotation_euler[0] = 1.5708
obj.rotation_euler[2] = 1.5708
# bpy.ops.wm.ply_import(filepath=object_path, directory=os.path.dirname(object_path),forward_axis='X', up_axis='Y')
process_ply(obj)
else:
raise ValueError(f"Unsupported file type: {object_path}")
def save_images(object_file: str, smpl_file: str) -> None:
"""Saves rendered images of the object in the scene."""
object_uid = '' # os.path.basename(object_file).split(".")[0]
# # if we already render this object, we skip it
if os.path.exists(os.path.join(args.output_dir, 'meta.npy')): return
os.makedirs(args.output_dir, exist_ok=True)
os.makedirs(os.path.join(args.output_dir, 'camera'), exist_ok=True)
reset_scene()
load_object(object_file)
lights = [obj for obj in bpy.context.scene.objects if obj.type == 'LIGHT']
for light in lights:
bpy.data.objects.remove(light, do_unlink=True)
# bproc.init()
world_tree = bpy.context.scene.world.node_tree
back_node = world_tree.nodes['Background']
env_light = 0.5
back_node.inputs['Color'].default_value = Vector([env_light, env_light, env_light, 1.0])
back_node.inputs['Strength'].default_value = 1.0
#Make light just directional, disable shadows.
light_data = bpy.data.lights.new(name=f'Light', type='SUN')
light = bpy.data.objects.new(name=f'Light', object_data=light_data)
bpy.context.collection.objects.link(light)
light = bpy.data.lights['Light']
light.use_shadow = False
# Possibly disable specular shading:
light.specular_factor = 1.0
light.energy = 5.0
#Add another light source so stuff facing away from light is not completely dark
light_data = bpy.data.lights.new(name=f'Light2', type='SUN')
light = bpy.data.objects.new(name=f'Light2', object_data=light_data)
bpy.context.collection.objects.link(light)
light2 = bpy.data.lights['Light2']
light2.use_shadow = False
light2.specular_factor = 1.0
light2.energy = 3 #0.015
bpy.data.objects['Light2'].rotation_euler = bpy.data.objects['Light2'].rotation_euler
bpy.data.objects['Light2'].rotation_euler[0] += 180
#Add another light source so stuff facing away from light is not completely dark
light_data = bpy.data.lights.new(name=f'Light3', type='SUN')
light = bpy.data.objects.new(name=f'Light3', object_data=light_data)
bpy.context.collection.objects.link(light)
light3 = bpy.data.lights['Light3']
light3.use_shadow = False
light3.specular_factor = 1.0
light3.energy = 3 #0.015
bpy.data.objects['Light3'].rotation_euler = bpy.data.objects['Light3'].rotation_euler
bpy.data.objects['Light3'].rotation_euler[0] += 90
#Add another light source so stuff facing away from light is not completely dark
light_data = bpy.data.lights.new(name=f'Light4', type='SUN')
light = bpy.data.objects.new(name=f'Light4', object_data=light_data)
bpy.context.collection.objects.link(light)
light4 = bpy.data.lights['Light4']
light4.use_shadow = False
light4.specular_factor = 1.0
light4.energy = 3 #0.015
bpy.data.objects['Light4'].rotation_euler = bpy.data.objects['Light4'].rotation_euler
bpy.data.objects['Light4'].rotation_euler[0] += -90
scale, offset = normalize_scene()
try:
# some objects' normals are affected by textures
mesh_objects = [obj for obj in scene_meshes()]
main_bsdf_name = 'BsdfPrincipled'
normal_name = 'Normal'
for obj in mesh_objects:
for mat in obj.data.materials:
for node in mat.node_tree.nodes:
if main_bsdf_name in node.bl_idname:
principled_bsdf = node
# remove links, we don't want add normal textures
if principled_bsdf.inputs[normal_name].links:
mat.node_tree.links.remove(principled_bsdf.inputs[normal_name].links[0])
except:
print("don't know why")
# create an empty object to track
empty = bpy.data.objects.new("Empty", None)
scene.collection.objects.link(empty)
cam_constraint.target = empty
subject_width = 1.0
normal_file_output.base_path = os.path.join(args.output_dir, object_uid, 'normal')
for i in range(args.num_images):
# change the camera to orthogonal
cam.data.type = 'ORTHO'
cam.data.ortho_scale = subject_width
distance = 1.5
azimuth = i * 360 / args.num_images
bpy.context.view_layer.update()
set_camera_mvdream(azimuth, 0, distance)
render_and_save(i * (args.random_images+1), object_uid, -1, azimuth, 0, distance, ortho=True)
extract_depth(os.path.join(args.output_dir, object_uid, 'depth'))
# #### smpl
reset_scene()
load_object(smpl_file)
lights = [obj for obj in bpy.context.scene.objects if obj.type == 'LIGHT']
for light in lights:
bpy.data.objects.remove(light, do_unlink=True)
scale, offset = normalize_scene()
try:
# some objects' normals are affected by textures
mesh_objects = [obj for obj in scene_meshes()]
main_bsdf_name = 'BsdfPrincipled'
normal_name = 'Normal'
for obj in mesh_objects:
for mat in obj.data.materials:
for node in mat.node_tree.nodes:
if main_bsdf_name in node.bl_idname:
principled_bsdf = node
# remove links, we don't want add normal textures
if principled_bsdf.inputs[normal_name].links:
mat.node_tree.links.remove(principled_bsdf.inputs[normal_name].links[0])
except:
print("don't know why")
# create an empty object to track
empty = bpy.data.objects.new("Empty", None)
scene.collection.objects.link(empty)
cam_constraint.target = empty
subject_width = 1.0
normal_file_output.base_path = os.path.join(args.output_dir, object_uid, 'smpl_normal')
for i in range(args.num_images):
# change the camera to orthogonal
cam.data.type = 'ORTHO'
cam.data.ortho_scale = subject_width
distance = 1.5
azimuth = i * 360 / args.num_images
bpy.context.view_layer.update()
set_camera_mvdream(azimuth, 0, distance)
render_and_save_smpl(i * (args.random_images+1), object_uid, -1, azimuth, 0, distance, ortho=True)
np.save(os.path.join(args.output_dir, object_uid, 'meta.npy'), np.asarray([scale, offset[0], offset[1], offset[1]],np.float32))
if __name__ == "__main__":
try:
start_i = time.time()
if args.object_path.startswith("http"):
local_path = download_object(args.object_path)
else:
local_path = args.object_path
save_images(local_path, args.smpl_path)
end_i = time.time()
print("Finished", local_path, "in", end_i - start_i, "seconds")
# delete the object if it was downloaded
if args.object_path.startswith("http"):
os.remove(local_path)
except Exception as e:
print("Failed to render", args.object_path)
print(e)
|