File size: 8,679 Bytes
2252f3d ab2d09a 2252f3d ab2d09a 2252f3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
import argparse
import sys
import os
from typing import Dict, Optional, Tuple, List
from omegaconf import OmegaConf
from PIL import Image
from dataclasses import dataclass
from collections import defaultdict
import torch
import torch.utils.checkpoint
from torchvision.utils import make_grid, save_image
from accelerate.utils import set_seed
from tqdm.auto import tqdm
import torch.nn.functional as F
from einops import rearrange
from rembg import remove, new_session
import pdb
from mvdiffusion.pipelines.pipeline_mvdiffusion_unclip import StableUnCLIPImg2ImgPipeline
from econdataset import SMPLDataset
from reconstruct import ReMesh
providers = [
('CUDAExecutionProvider', {
'device_id': 0,
'arena_extend_strategy': 'kSameAsRequested',
'gpu_mem_limit': 8 * 1024 * 1024 * 1024,
'cudnn_conv_algo_search': 'HEURISTIC',
})
]
session = new_session(providers=providers)
weight_dtype = torch.float16
def tensor_to_numpy(tensor):
return tensor.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy()
@dataclass
class TestConfig:
pretrained_model_name_or_path: str
revision: Optional[str]
validation_dataset: Dict
save_dir: str
seed: Optional[int]
validation_batch_size: int
dataloader_num_workers: int
# save_single_views: bool
save_mode: str
local_rank: int
pipe_kwargs: Dict
pipe_validation_kwargs: Dict
unet_from_pretrained_kwargs: Dict
validation_guidance_scales: float
validation_grid_nrow: int
num_views: int
enable_xformers_memory_efficient_attention: bool
with_smpl: Optional[bool]
recon_opt: Dict
def convert_to_numpy(tensor):
return tensor.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy()
def convert_to_pil(tensor):
return Image.fromarray(convert_to_numpy(tensor))
def save_image(tensor, fp):
ndarr = convert_to_numpy(tensor)
# pdb.set_trace()
save_image_numpy(ndarr, fp)
return ndarr
def save_image_numpy(ndarr, fp):
im = Image.fromarray(ndarr)
im.save(fp)
def run_inference(dataloader, econdata, pipeline, carving, cfg: TestConfig, save_dir):
pipeline.set_progress_bar_config(disable=True)
if cfg.seed is None:
generator = None
else:
generator = torch.Generator(device=pipeline.unet.device).manual_seed(cfg.seed)
images_cond, pred_cat = [], defaultdict(list)
for case_id, batch in tqdm(enumerate(dataloader)):
images_cond.append(batch['imgs_in'][:, 0])
imgs_in = torch.cat([batch['imgs_in']]*2, dim=0)
num_views = imgs_in.shape[1]
imgs_in = rearrange(imgs_in, "B Nv C H W -> (B Nv) C H W")# (B*Nv, 3, H, W)
if cfg.with_smpl:
smpl_in = torch.cat([batch['smpl_imgs_in']]*2, dim=0)
smpl_in = rearrange(smpl_in, "B Nv C H W -> (B Nv) C H W")
else:
smpl_in = None
normal_prompt_embeddings, clr_prompt_embeddings = batch['normal_prompt_embeddings'], batch['color_prompt_embeddings']
prompt_embeddings = torch.cat([normal_prompt_embeddings, clr_prompt_embeddings], dim=0)
prompt_embeddings = rearrange(prompt_embeddings, "B Nv N C -> (B Nv) N C")
with torch.autocast("cuda"):
# B*Nv images
guidance_scale = cfg.validation_guidance_scales
unet_out = pipeline(
imgs_in, None, prompt_embeds=prompt_embeddings,
dino_feature=None, smpl_in=smpl_in,
generator=generator, guidance_scale=guidance_scale, output_type='pt', num_images_per_prompt=1,
**cfg.pipe_validation_kwargs
)
out = unet_out.images
bsz = out.shape[0] // 2
normals_pred = out[:bsz]
images_pred = out[bsz:]
if cfg.save_mode == 'concat': ## save concatenated color and normal---------------------
pred_cat[f"cfg{guidance_scale:.1f}"].append(torch.cat([normals_pred, images_pred], dim=-1)) # b, 3, h, w
cur_dir = os.path.join(save_dir, f"cropsize-{cfg.validation_dataset.crop_size}-cfg{guidance_scale:.1f}-seed{cfg.seed}-smpl-{cfg.with_smpl}")
os.makedirs(cur_dir, exist_ok=True)
for i in range(bsz//num_views):
scene = batch['filename'][i].split('.')[0]
img_in_ = images_cond[-1][i].to(out.device)
vis_ = [img_in_]
for j in range(num_views):
idx = i*num_views + j
normal = normals_pred[idx]
color = images_pred[idx]
vis_.append(color)
vis_.append(normal)
out_filename = f"{cur_dir}/{scene}.png"
vis_ = torch.stack(vis_, dim=0)
vis_ = make_grid(vis_, nrow=len(vis_), padding=0, value_range=(0, 1))
save_image(vis_, out_filename)
elif cfg.save_mode == 'rgb':
for i in range(bsz//num_views):
scene = batch['filename'][i].split('.')[0]
img_in_ = images_cond[-1][i].to(out.device)
normals, colors = [], []
for j in range(num_views):
idx = i*num_views + j
normal = normals_pred[idx]
if j == 0:
color = imgs_in[0].to(out.device)
else:
color = images_pred[idx]
if j in [3, 4]:
normal = torch.flip(normal, dims=[2])
color = torch.flip(color, dims=[2])
colors.append(color)
if j == 6:
normal = F.interpolate(normal.unsqueeze(0), size=(256, 256), mode='bilinear', align_corners=False).squeeze(0)
normals.append(normal)
## save color and normal---------------------
# normal_filename = f"normals_{view}_masked.png"
# rgb_filename = f"color_{view}_masked.png"
# save_image(normal, os.path.join(scene_dir, normal_filename))
# save_image(color, os.path.join(scene_dir, rgb_filename))
normals[0][:, :256, 256:512] = normals[-1]
colors = [remove(convert_to_pil(tensor), session=session) for tensor in colors[:6]]
normals = [remove(convert_to_pil(tensor), session=session) for tensor in normals[:6]]
pose = econdata.__getitem__(case_id)
carving.optimize_case(scene, pose, colors, normals)
torch.cuda.empty_cache()
def load_pshuman_pipeline(cfg):
pipeline = StableUnCLIPImg2ImgPipeline.from_pretrained(cfg.pretrained_model_name_or_path, torch_dtype=weight_dtype)
pipeline.unet.enable_xformers_memory_efficient_attention()
if torch.cuda.is_available():
pipeline.to('cuda')
return pipeline
def main(
cfg: TestConfig
):
# If passed along, set the training seed now.
if cfg.seed is not None:
set_seed(cfg.seed)
pipeline = load_pshuman_pipeline(cfg)
if cfg.with_smpl:
from mvdiffusion.data.testdata_with_smpl import SingleImageDataset
else:
from mvdiffusion.data.single_image_dataset import SingleImageDataset
# Get the dataset
validation_dataset = SingleImageDataset(
**cfg.validation_dataset
)
validation_dataloader = torch.utils.data.DataLoader(
validation_dataset, batch_size=cfg.validation_batch_size, shuffle=False, num_workers=cfg.dataloader_num_workers
)
dataset_param = {'image_dir': validation_dataset.root_dir, 'seg_dir': None, 'colab': False, 'has_det': True, 'hps_type': 'pixie'}
econdata = SMPLDataset(dataset_param, device='cuda')
carving = ReMesh(cfg.recon_opt, econ_dataset=econdata)
run_inference(validation_dataloader, econdata, pipeline, carving, cfg, cfg.save_dir)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, required=True)
args, extras = parser.parse_known_args()
from utils.misc import load_config
# parse YAML config to OmegaConf
cfg = load_config(args.config, cli_args=extras)
schema = OmegaConf.structured(TestConfig)
cfg = OmegaConf.merge(schema, cfg)
main(cfg)
|