|
import os |
|
os.environ["OPENCV_IO_ENABLE_OPENEXR"]="1" |
|
import cv2 |
|
import mediapipe as mp |
|
import torch |
|
import numpy as np |
|
import torch.nn.functional as F |
|
from PIL import Image |
|
from lib.pymafx.core import constants |
|
from rembg import remove |
|
|
|
from torchvision import transforms |
|
from kornia.geometry.transform import get_affine_matrix2d, warp_affine |
|
|
|
|
|
def transform_to_tensor(res, mean=None, std=None, is_tensor=False): |
|
all_ops = [] |
|
if res is not None: |
|
all_ops.append(transforms.Resize(size=res)) |
|
if not is_tensor: |
|
all_ops.append(transforms.ToTensor()) |
|
if mean is not None and std is not None: |
|
all_ops.append(transforms.Normalize(mean=mean, std=std)) |
|
return transforms.Compose(all_ops) |
|
|
|
|
|
def get_affine_matrix_wh(w1, h1, w2, h2): |
|
|
|
transl = torch.tensor([(w2 - w1) / 2.0, (h2 - h1) / 2.0]).unsqueeze(0) |
|
center = torch.tensor([w1 / 2.0, h1 / 2.0]).unsqueeze(0) |
|
scale = torch.min(torch.tensor([w2 / w1, h2 / h1])).repeat(2).unsqueeze(0) |
|
M = get_affine_matrix2d(transl, center, scale, angle=torch.tensor([0.])) |
|
|
|
return M |
|
|
|
|
|
def get_affine_matrix_box(boxes, w2, h2): |
|
|
|
|
|
width = boxes[:, 2] - boxes[:, 0] |
|
height = boxes[:, 3] - boxes[:, 1] |
|
center = torch.tensor( |
|
[(boxes[:, 0] + boxes[:, 2]) / 2.0, (boxes[:, 1] + boxes[:, 3]) / 2.0] |
|
).T |
|
scale = torch.min(torch.tensor([w2 / width, h2 / height]), |
|
dim=0)[0].unsqueeze(1).repeat(1, 2) * 0.9 |
|
transl = torch.cat([w2 / 2.0 - center[:, 0:1], h2 / 2.0 - center[:, 1:2]], dim=1) |
|
M = get_affine_matrix2d(transl, center, scale, angle=torch.tensor([0.,]*transl.shape[0])) |
|
|
|
return M |
|
|
|
|
|
def load_img(img_file): |
|
|
|
if img_file.endswith("exr"): |
|
img = cv2.imread(img_file, cv2.IMREAD_ANYCOLOR | cv2.IMREAD_ANYDEPTH) |
|
else : |
|
img = cv2.imread(img_file, cv2.IMREAD_UNCHANGED) |
|
|
|
|
|
if img.dtype != np.uint8 : |
|
img = cv2.normalize(img, None, 0, 255, cv2.NORM_MINMAX, dtype=cv2.CV_8U) |
|
|
|
if len(img.shape) == 2: |
|
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) |
|
|
|
if not img_file.endswith("png"): |
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) |
|
else: |
|
img = cv2.cvtColor(img, cv2.COLOR_RGBA2BGR) |
|
|
|
return torch.tensor(img).permute(2, 0, 1).unsqueeze(0).float(), img.shape[:2] |
|
|
|
|
|
def get_keypoints(image): |
|
def collect_xyv(x, body=True): |
|
lmk = x.landmark |
|
all_lmks = [] |
|
for i in range(len(lmk)): |
|
visibility = lmk[i].visibility if body else 1.0 |
|
all_lmks.append(torch.Tensor([lmk[i].x, lmk[i].y, lmk[i].z, visibility])) |
|
return torch.stack(all_lmks).view(-1, 4) |
|
|
|
mp_holistic = mp.solutions.holistic |
|
|
|
with mp_holistic.Holistic( |
|
static_image_mode=True, |
|
model_complexity=2, |
|
) as holistic: |
|
results = holistic.process(image) |
|
|
|
fake_kps = torch.zeros(33, 4) |
|
|
|
result = {} |
|
result["body"] = collect_xyv(results.pose_landmarks) if results.pose_landmarks else fake_kps |
|
result["lhand"] = collect_xyv( |
|
results.left_hand_landmarks, False |
|
) if results.left_hand_landmarks else fake_kps |
|
result["rhand"] = collect_xyv( |
|
results.right_hand_landmarks, False |
|
) if results.right_hand_landmarks else fake_kps |
|
result["face"] = collect_xyv( |
|
results.face_landmarks, False |
|
) if results.face_landmarks else fake_kps |
|
|
|
return result |
|
|
|
|
|
def get_pymafx(image, landmarks): |
|
|
|
|
|
|
|
item = { |
|
'img_body': |
|
F.interpolate(image.unsqueeze(0), size=224, mode='bicubic', align_corners=True)[0] |
|
} |
|
|
|
for part in ['lhand', 'rhand', 'face']: |
|
kp2d = landmarks[part] |
|
kp2d_valid = kp2d[kp2d[:, 3] > 0.] |
|
if len(kp2d_valid) > 0: |
|
bbox = [ |
|
min(kp2d_valid[:, 0]), |
|
min(kp2d_valid[:, 1]), |
|
max(kp2d_valid[:, 0]), |
|
max(kp2d_valid[:, 1]) |
|
] |
|
center_part = [(bbox[2] + bbox[0]) / 2., (bbox[3] + bbox[1]) / 2.] |
|
scale_part = 2. * max(bbox[2] - bbox[0], bbox[3] - bbox[1]) / 2 |
|
|
|
|
|
if len(kp2d_valid) < 1 or scale_part < 0.01: |
|
center_part = [0, 0] |
|
scale_part = 0.5 |
|
kp2d[:, 3] = 0 |
|
|
|
center_part = torch.tensor(center_part).float() |
|
|
|
theta_part = torch.zeros(1, 2, 3) |
|
theta_part[:, 0, 0] = scale_part |
|
theta_part[:, 1, 1] = scale_part |
|
theta_part[:, :, -1] = center_part |
|
|
|
grid = F.affine_grid(theta_part, torch.Size([1, 3, 224, 224]), align_corners=False) |
|
img_part = F.grid_sample(image.unsqueeze(0), grid, align_corners=False).squeeze(0).float() |
|
|
|
item[f'img_{part}'] = img_part |
|
|
|
theta_i_inv = torch.zeros_like(theta_part) |
|
theta_i_inv[:, 0, 0] = 1. / theta_part[:, 0, 0] |
|
theta_i_inv[:, 1, 1] = 1. / theta_part[:, 1, 1] |
|
theta_i_inv[:, :, -1] = -theta_part[:, :, -1] / theta_part[:, 0, 0].unsqueeze(-1) |
|
item[f'{part}_theta_inv'] = theta_i_inv[0] |
|
|
|
return item |
|
|
|
|
|
def remove_floats(mask): |
|
|
|
|
|
|
|
|
|
|
|
new_mask = np.zeros(mask.shape) |
|
cnts, hier = cv2.findContours(mask.astype(np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE) |
|
cnt_index = sorted(range(len(cnts)), key=lambda k: cv2.contourArea(cnts[k]), reverse=True) |
|
body_cnt = cnts[cnt_index[0]] |
|
childs_cnt_idx = np.where(np.array(hier)[0, :, -1] == cnt_index[0])[0] |
|
childs_cnt = [cnts[idx] for idx in childs_cnt_idx] |
|
cv2.fillPoly(new_mask, [body_cnt], 1) |
|
cv2.fillPoly(new_mask, childs_cnt, 0) |
|
|
|
return new_mask |
|
|
|
|
|
def econ_process_image(img_file, hps_type, single, input_res, detector): |
|
|
|
img_raw, (in_height, in_width) = load_img(img_file) |
|
tgt_res = input_res * 2 |
|
M_square = get_affine_matrix_wh(in_width, in_height, tgt_res, tgt_res) |
|
img_square = warp_affine( |
|
img_raw, |
|
M_square[:, :2], (tgt_res, ) * 2, |
|
mode='bilinear', |
|
padding_mode='zeros', |
|
align_corners=True |
|
) |
|
|
|
|
|
predictions = detector(img_square / 255.)[0] |
|
|
|
if single: |
|
top_score = predictions["scores"][predictions["labels"] == 1].max() |
|
human_ids = torch.where(predictions["scores"] == top_score)[0] |
|
else: |
|
human_ids = torch.logical_and(predictions["labels"] == 1, |
|
predictions["scores"] > 0.9).nonzero().squeeze(1) |
|
|
|
boxes = predictions["boxes"][human_ids, :].detach().cpu().numpy() |
|
masks = predictions["masks"][human_ids, :, :].permute(0, 2, 3, 1).detach().cpu().numpy() |
|
|
|
M_crop = get_affine_matrix_box(boxes, input_res, input_res) |
|
|
|
img_icon_lst = [] |
|
img_crop_lst = [] |
|
img_hps_lst = [] |
|
img_mask_lst = [] |
|
landmark_lst = [] |
|
hands_visibility_lst = [] |
|
img_pymafx_lst = [] |
|
|
|
uncrop_param = { |
|
"ori_shape": [in_height, in_width], |
|
"box_shape": [input_res, input_res], |
|
"square_shape": [tgt_res, tgt_res], |
|
"M_square": M_square, |
|
"M_crop": M_crop |
|
} |
|
|
|
for idx in range(len(boxes)): |
|
|
|
|
|
if len(masks) > 1: |
|
mask_detection = (masks[np.arange(len(masks)) != idx]).max(axis=0) |
|
else: |
|
mask_detection = masks[0] * 0. |
|
|
|
img_square_rgba = torch.cat( |
|
[img_square.squeeze(0).permute(1, 2, 0), |
|
torch.tensor(mask_detection < 0.4) * 255], |
|
dim=2 |
|
) |
|
|
|
img_crop = warp_affine( |
|
img_square_rgba.unsqueeze(0).permute(0, 3, 1, 2), |
|
M_crop[idx:idx + 1, :2], (input_res, ) * 2, |
|
mode='bilinear', |
|
padding_mode='zeros', |
|
align_corners=True |
|
).squeeze(0).permute(1, 2, 0).numpy().astype(np.uint8) |
|
|
|
|
|
img_rembg = remove(img_crop) |
|
img_mask = remove_floats(img_rembg[:, :, [3]]) |
|
|
|
mean_icon = std_icon = (0.5, 0.5, 0.5) |
|
img_np = (img_rembg[..., :3] * img_mask).astype(np.uint8) |
|
img_icon = transform_to_tensor(512, mean_icon, std_icon)( |
|
Image.fromarray(img_np) |
|
) * torch.tensor(img_mask).permute(2, 0, 1) |
|
img_hps = transform_to_tensor(224, constants.IMG_NORM_MEAN, |
|
constants.IMG_NORM_STD)(Image.fromarray(img_np)) |
|
|
|
landmarks = get_keypoints(img_np) |
|
|
|
|
|
hands_visibility = [True, True] |
|
if landmarks['lhand'][:, -1].mean() == 0.: |
|
hands_visibility[0] = False |
|
if landmarks['rhand'][:, -1].mean() == 0.: |
|
hands_visibility[1] = False |
|
hands_visibility_lst.append(hands_visibility) |
|
|
|
if hps_type == 'pymafx': |
|
img_pymafx_lst.append( |
|
get_pymafx( |
|
transform_to_tensor(512, constants.IMG_NORM_MEAN, |
|
constants.IMG_NORM_STD)(Image.fromarray(img_np)), landmarks |
|
) |
|
) |
|
|
|
img_crop_lst.append(torch.tensor(img_crop).permute(2, 0, 1) / 255.0) |
|
img_icon_lst.append(img_icon) |
|
img_hps_lst.append(img_hps) |
|
img_mask_lst.append(torch.tensor(img_mask[..., 0])) |
|
landmark_lst.append(landmarks['body']) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return_dict = { |
|
"img_icon": torch.stack(img_icon_lst).float(), |
|
"img_crop": torch.stack(img_crop_lst).float(), |
|
"img_hps": torch.stack(img_hps_lst).float(), |
|
"img_raw": img_raw, |
|
"img_mask": torch.stack(img_mask_lst).float(), |
|
"uncrop_param": uncrop_param, |
|
"landmark": torch.stack(landmark_lst), |
|
"hands_visibility": hands_visibility_lst, |
|
} |
|
|
|
img_pymafx = {} |
|
|
|
if len(img_pymafx_lst) > 0: |
|
for idx in range(len(img_pymafx_lst)): |
|
for key in img_pymafx_lst[idx].keys(): |
|
if key not in img_pymafx.keys(): |
|
img_pymafx[key] = [img_pymafx_lst[idx][key]] |
|
else: |
|
img_pymafx[key] += [img_pymafx_lst[idx][key]] |
|
|
|
for key in img_pymafx.keys(): |
|
img_pymafx[key] = torch.stack(img_pymafx[key]).float() |
|
|
|
return_dict.update({"img_pymafx": img_pymafx}) |
|
|
|
return return_dict |
|
|
|
|
|
def blend_rgb_norm(norms, data): |
|
|
|
|
|
masks = (norms.sum(dim=1) != norms[0, :, 0, 0].sum()).float().unsqueeze(1) |
|
norm_mask = F.interpolate( |
|
torch.cat([norms, masks], dim=1).detach(), |
|
size=data["uncrop_param"]["box_shape"], |
|
mode="bilinear", |
|
align_corners=False |
|
) |
|
final = data["img_raw"].type_as(norm_mask) |
|
|
|
for idx in range(len(norms)): |
|
|
|
norm_pred = (norm_mask[idx:idx + 1, :3, :, :] + 1.0) * 255.0 / 2.0 |
|
mask_pred = norm_mask[idx:idx + 1, 3:4, :, :].repeat(1, 3, 1, 1) |
|
|
|
norm_ori = unwrap(norm_pred, data["uncrop_param"], idx) |
|
mask_ori = unwrap(mask_pred, data["uncrop_param"], idx) |
|
|
|
final = final * (1.0 - mask_ori) + norm_ori * mask_ori |
|
|
|
return final.detach().cpu() |
|
|
|
|
|
def unwrap(image, uncrop_param, idx): |
|
|
|
device = image.device |
|
|
|
img_square = warp_affine( |
|
image, |
|
torch.inverse(uncrop_param["M_crop"])[idx:idx + 1, :2].to(device), |
|
uncrop_param["square_shape"], |
|
mode='bilinear', |
|
padding_mode='zeros', |
|
align_corners=True |
|
) |
|
|
|
img_ori = warp_affine( |
|
img_square, |
|
torch.inverse(uncrop_param["M_square"])[:, :2].to(device), |
|
uncrop_param["ori_shape"], |
|
mode='bilinear', |
|
padding_mode='zeros', |
|
align_corners=True |
|
) |
|
|
|
return img_ori |
|
|