|
import torch |
|
import torch.nn.functional as F |
|
import numpy as np |
|
''' Rotation Converter |
|
This function is borrowed from https://github.com/kornia/kornia |
|
|
|
ref: https://kornia.readthedocs.io/en/v0.1.2/_modules/torchgeometry/core/conversions.html# |
|
Repre: euler angle(3), axis angle(3), rotation matrix(3x3), quaternion(4), continuous rotation representation (6) |
|
batch_rodrigues: axis angle -> matrix |
|
''' |
|
pi = torch.Tensor([3.14159265358979323846]) |
|
|
|
|
|
def rad2deg(tensor): |
|
"""Function that converts angles from radians to degrees. |
|
|
|
See :class:`~torchgeometry.RadToDeg` for details. |
|
|
|
Args: |
|
tensor (Tensor): Tensor of arbitrary shape. |
|
|
|
Returns: |
|
Tensor: Tensor with same shape as input. |
|
|
|
Example: |
|
>>> input = tgm.pi * torch.rand(1, 3, 3) |
|
>>> output = tgm.rad2deg(input) |
|
""" |
|
if not torch.is_tensor(tensor): |
|
raise TypeError("Input type is not a torch.Tensor. Got {}".format( |
|
type(tensor))) |
|
|
|
return 180. * tensor / pi.to(tensor.device).type(tensor.dtype) |
|
|
|
|
|
def deg2rad(tensor): |
|
"""Function that converts angles from degrees to radians. |
|
|
|
See :class:`~torchgeometry.DegToRad` for details. |
|
|
|
Args: |
|
tensor (Tensor): Tensor of arbitrary shape. |
|
|
|
Returns: |
|
Tensor: Tensor with same shape as input. |
|
|
|
Examples:: |
|
|
|
>>> input = 360. * torch.rand(1, 3, 3) |
|
>>> output = tgm.deg2rad(input) |
|
""" |
|
if not torch.is_tensor(tensor): |
|
raise TypeError("Input type is not a torch.Tensor. Got {}".format( |
|
type(tensor))) |
|
|
|
return tensor * pi.to(tensor.device).type(tensor.dtype) / 180. |
|
|
|
|
|
|
|
|
|
|
|
def euler_to_quaternion(r): |
|
x = r[..., 0] |
|
y = r[..., 1] |
|
z = r[..., 2] |
|
|
|
z = z / 2.0 |
|
y = y / 2.0 |
|
x = x / 2.0 |
|
cz = torch.cos(z) |
|
sz = torch.sin(z) |
|
cy = torch.cos(y) |
|
sy = torch.sin(y) |
|
cx = torch.cos(x) |
|
sx = torch.sin(x) |
|
quaternion = torch.zeros_like(r.repeat(1, 2))[..., :4].to(r.device) |
|
quaternion[..., 0] += cx * cy * cz - sx * sy * sz |
|
quaternion[..., 1] += cx * sy * sz + cy * cz * sx |
|
quaternion[..., 2] += cx * cz * sy - sx * cy * sz |
|
quaternion[..., 3] += cx * cy * sz + sx * cz * sy |
|
return quaternion |
|
|
|
|
|
def rotation_matrix_to_quaternion(rotation_matrix, eps=1e-6): |
|
"""Convert 3x4 rotation matrix to 4d quaternion vector |
|
|
|
This algorithm is based on algorithm described in |
|
https://github.com/KieranWynn/pyquaternion/blob/master/pyquaternion/quaternion.py#L201 |
|
|
|
Args: |
|
rotation_matrix (Tensor): the rotation matrix to convert. |
|
|
|
Return: |
|
Tensor: the rotation in quaternion |
|
|
|
Shape: |
|
- Input: :math:`(N, 3, 4)` |
|
- Output: :math:`(N, 4)` |
|
|
|
Example: |
|
>>> input = torch.rand(4, 3, 4) # Nx3x4 |
|
>>> output = tgm.rotation_matrix_to_quaternion(input) # Nx4 |
|
""" |
|
if not torch.is_tensor(rotation_matrix): |
|
raise TypeError("Input type is not a torch.Tensor. Got {}".format( |
|
type(rotation_matrix))) |
|
|
|
if len(rotation_matrix.shape) > 3: |
|
raise ValueError( |
|
"Input size must be a three dimensional tensor. Got {}".format( |
|
rotation_matrix.shape)) |
|
|
|
|
|
|
|
|
|
|
|
rmat_t = torch.transpose(rotation_matrix, 1, 2) |
|
|
|
mask_d2 = rmat_t[:, 2, 2] < eps |
|
|
|
mask_d0_d1 = rmat_t[:, 0, 0] > rmat_t[:, 1, 1] |
|
mask_d0_nd1 = rmat_t[:, 0, 0] < -rmat_t[:, 1, 1] |
|
|
|
t0 = 1 + rmat_t[:, 0, 0] - rmat_t[:, 1, 1] - rmat_t[:, 2, 2] |
|
q0 = torch.stack([ |
|
rmat_t[:, 1, 2] - rmat_t[:, 2, 1], t0, |
|
rmat_t[:, 0, 1] + rmat_t[:, 1, 0], rmat_t[:, 2, 0] + rmat_t[:, 0, 2] |
|
], -1) |
|
t0_rep = t0.repeat(4, 1).t() |
|
|
|
t1 = 1 - rmat_t[:, 0, 0] + rmat_t[:, 1, 1] - rmat_t[:, 2, 2] |
|
q1 = torch.stack([ |
|
rmat_t[:, 2, 0] - rmat_t[:, 0, 2], rmat_t[:, 0, 1] + rmat_t[:, 1, 0], |
|
t1, rmat_t[:, 1, 2] + rmat_t[:, 2, 1] |
|
], -1) |
|
t1_rep = t1.repeat(4, 1).t() |
|
|
|
t2 = 1 - rmat_t[:, 0, 0] - rmat_t[:, 1, 1] + rmat_t[:, 2, 2] |
|
q2 = torch.stack([ |
|
rmat_t[:, 0, 1] - rmat_t[:, 1, 0], rmat_t[:, 2, 0] + rmat_t[:, 0, 2], |
|
rmat_t[:, 1, 2] + rmat_t[:, 2, 1], t2 |
|
], -1) |
|
t2_rep = t2.repeat(4, 1).t() |
|
|
|
t3 = 1 + rmat_t[:, 0, 0] + rmat_t[:, 1, 1] + rmat_t[:, 2, 2] |
|
q3 = torch.stack([ |
|
t3, rmat_t[:, 1, 2] - rmat_t[:, 2, 1], |
|
rmat_t[:, 2, 0] - rmat_t[:, 0, 2], rmat_t[:, 0, 1] - rmat_t[:, 1, 0] |
|
], -1) |
|
t3_rep = t3.repeat(4, 1).t() |
|
|
|
mask_c0 = mask_d2 * mask_d0_d1.float() |
|
mask_c1 = mask_d2 * (1 - mask_d0_d1.float()) |
|
mask_c2 = (1 - mask_d2.float()) * mask_d0_nd1 |
|
mask_c3 = (1 - mask_d2.float()) * (1 - mask_d0_nd1.float()) |
|
mask_c0 = mask_c0.view(-1, 1).type_as(q0) |
|
mask_c1 = mask_c1.view(-1, 1).type_as(q1) |
|
mask_c2 = mask_c2.view(-1, 1).type_as(q2) |
|
mask_c3 = mask_c3.view(-1, 1).type_as(q3) |
|
|
|
q = q0 * mask_c0 + q1 * mask_c1 + q2 * mask_c2 + q3 * mask_c3 |
|
q /= torch.sqrt(t0_rep * mask_c0 + t1_rep * mask_c1 + |
|
t2_rep * mask_c2 + t3_rep * mask_c3) |
|
q *= 0.5 |
|
return q |
|
|
|
|
|
def angle_axis_to_quaternion(angle_axis: torch.Tensor) -> torch.Tensor: |
|
"""Convert an angle axis to a quaternion. |
|
|
|
Adapted from ceres C++ library: ceres-solver/include/ceres/rotation.h |
|
|
|
Args: |
|
angle_axis (torch.Tensor): tensor with angle axis. |
|
|
|
Return: |
|
torch.Tensor: tensor with quaternion. |
|
|
|
Shape: |
|
- Input: :math:`(*, 3)` where `*` means, any number of dimensions |
|
- Output: :math:`(*, 4)` |
|
|
|
Example: |
|
>>> angle_axis = torch.rand(2, 4) # Nx4 |
|
>>> quaternion = tgm.angle_axis_to_quaternion(angle_axis) # Nx3 |
|
""" |
|
if not torch.is_tensor(angle_axis): |
|
raise TypeError("Input type is not a torch.Tensor. Got {}".format( |
|
type(angle_axis))) |
|
|
|
if not angle_axis.shape[-1] == 3: |
|
raise ValueError( |
|
"Input must be a tensor of shape Nx3 or 3. Got {}".format( |
|
angle_axis.shape)) |
|
|
|
a0: torch.Tensor = angle_axis[..., 0:1] |
|
a1: torch.Tensor = angle_axis[..., 1:2] |
|
a2: torch.Tensor = angle_axis[..., 2:3] |
|
theta_squared: torch.Tensor = a0 * a0 + a1 * a1 + a2 * a2 |
|
|
|
theta: torch.Tensor = torch.sqrt(theta_squared) |
|
half_theta: torch.Tensor = theta * 0.5 |
|
|
|
mask: torch.Tensor = theta_squared > 0.0 |
|
ones: torch.Tensor = torch.ones_like(half_theta) |
|
|
|
k_neg: torch.Tensor = 0.5 * ones |
|
k_pos: torch.Tensor = torch.sin(half_theta) / theta |
|
k: torch.Tensor = torch.where(mask, k_pos, k_neg) |
|
w: torch.Tensor = torch.where(mask, torch.cos(half_theta), ones) |
|
|
|
quaternion: torch.Tensor = torch.zeros_like(angle_axis) |
|
quaternion[..., 0:1] += a0 * k |
|
quaternion[..., 1:2] += a1 * k |
|
quaternion[..., 2:3] += a2 * k |
|
return torch.cat([w, quaternion], dim=-1) |
|
|
|
|
|
|
|
|
|
|
|
def quaternion_to_rotation_matrix(quat): |
|
"""Convert quaternion coefficients to rotation matrix. |
|
Args: |
|
quat: size = [B, 4] 4 <===>(w, x, y, z) |
|
Returns: |
|
Rotation matrix corresponding to the quaternion -- size = [B, 3, 3] |
|
""" |
|
norm_quat = quat |
|
norm_quat = norm_quat / norm_quat.norm(p=2, dim=1, keepdim=True) |
|
w, x, y, z = norm_quat[:, 0], norm_quat[:, 1], norm_quat[:, |
|
2], norm_quat[:, |
|
3] |
|
|
|
B = quat.size(0) |
|
|
|
w2, x2, y2, z2 = w.pow(2), x.pow(2), y.pow(2), z.pow(2) |
|
wx, wy, wz = w * x, w * y, w * z |
|
xy, xz, yz = x * y, x * z, y * z |
|
|
|
rotMat = torch.stack([ |
|
w2 + x2 - y2 - z2, 2 * xy - 2 * wz, 2 * wy + 2 * xz, 2 * wz + 2 * xy, |
|
w2 - x2 + y2 - z2, 2 * yz - 2 * wx, 2 * xz - 2 * wy, 2 * wx + 2 * yz, |
|
w2 - x2 - y2 + z2 |
|
], |
|
dim=1).view(B, 3, 3) |
|
return rotMat |
|
|
|
|
|
def quaternion_to_angle_axis(quaternion: torch.Tensor): |
|
"""Convert quaternion vector to angle axis of rotation. TODO: CORRECT |
|
|
|
Adapted from ceres C++ library: ceres-solver/include/ceres/rotation.h |
|
|
|
Args: |
|
quaternion (torch.Tensor): tensor with quaternions. |
|
|
|
Return: |
|
torch.Tensor: tensor with angle axis of rotation. |
|
|
|
Shape: |
|
- Input: :math:`(*, 4)` where `*` means, any number of dimensions |
|
- Output: :math:`(*, 3)` |
|
|
|
Example: |
|
>>> quaternion = torch.rand(2, 4) # Nx4 |
|
>>> angle_axis = tgm.quaternion_to_angle_axis(quaternion) # Nx3 |
|
""" |
|
if not torch.is_tensor(quaternion): |
|
raise TypeError("Input type is not a torch.Tensor. Got {}".format( |
|
type(quaternion))) |
|
|
|
if not quaternion.shape[-1] == 4: |
|
raise ValueError( |
|
"Input must be a tensor of shape Nx4 or 4. Got {}".format( |
|
quaternion.shape)) |
|
|
|
q1: torch.Tensor = quaternion[..., 1] |
|
q2: torch.Tensor = quaternion[..., 2] |
|
q3: torch.Tensor = quaternion[..., 3] |
|
sin_squared_theta: torch.Tensor = q1 * q1 + q2 * q2 + q3 * q3 |
|
|
|
sin_theta: torch.Tensor = torch.sqrt(sin_squared_theta) |
|
cos_theta: torch.Tensor = quaternion[..., 0] |
|
two_theta: torch.Tensor = 2.0 * torch.where( |
|
cos_theta < 0.0, torch.atan2(-sin_theta, -cos_theta), |
|
torch.atan2(sin_theta, cos_theta)) |
|
|
|
k_pos: torch.Tensor = two_theta / sin_theta |
|
k_neg: torch.Tensor = 2.0 * \ |
|
torch.ones_like(sin_theta).to(quaternion.device) |
|
k: torch.Tensor = torch.where(sin_squared_theta > 0.0, k_pos, k_neg) |
|
|
|
angle_axis: torch.Tensor = torch.zeros_like(quaternion).to( |
|
quaternion.device)[..., :3] |
|
angle_axis[..., 0] += q1 * k |
|
angle_axis[..., 1] += q2 * k |
|
angle_axis[..., 2] += q3 * k |
|
return angle_axis |
|
|
|
|
|
|
|
|
|
|
|
_AXIS_TO_IND = {'x': 0, 'y': 1, 'z': 2} |
|
|
|
|
|
def _elementary_basis_vector(axis): |
|
b = torch.zeros(3) |
|
b[_AXIS_TO_IND[axis]] = 1 |
|
return b |
|
|
|
|
|
def _compute_euler_from_matrix(dcm, seq='xyz', extrinsic=False): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
orig_device = dcm.device |
|
dcm = dcm.to('cpu') |
|
seq = seq.lower() |
|
|
|
if extrinsic: |
|
seq = seq[::-1] |
|
|
|
if dcm.ndim == 2: |
|
dcm = dcm[None, :, :] |
|
num_rotations = dcm.shape[0] |
|
|
|
device = dcm.device |
|
|
|
|
|
|
|
n1 = _elementary_basis_vector(seq[0]) |
|
n2 = _elementary_basis_vector(seq[1]) |
|
n3 = _elementary_basis_vector(seq[2]) |
|
|
|
|
|
sl = torch.dot(torch.cross(n1, n2), n3) |
|
cl = torch.dot(n1, n3) |
|
|
|
|
|
|
|
offset = torch.atan2(sl, cl) |
|
c = torch.stack((n2, torch.cross(n1, n2), n1)).type(dcm.dtype).to(device) |
|
|
|
|
|
rot = torch.tensor([ |
|
[1, 0, 0], |
|
[0, cl, sl], |
|
[0, -sl, cl], |
|
]).type(dcm.dtype) |
|
|
|
res = torch.einsum('ij,...jk->...ik', c, dcm) |
|
dcm_transformed = torch.einsum('...ij,jk->...ik', res, c.T @ rot) |
|
|
|
|
|
angles = torch.zeros((num_rotations, 3), dtype=dcm.dtype, device=device) |
|
|
|
|
|
positive_unity = dcm_transformed[:, 2, 2] > 1 |
|
negative_unity = dcm_transformed[:, 2, 2] < -1 |
|
dcm_transformed[positive_unity, 2, 2] = 1 |
|
dcm_transformed[negative_unity, 2, 2] = -1 |
|
angles[:, 1] = torch.acos(dcm_transformed[:, 2, 2]) |
|
|
|
|
|
eps = 1e-7 |
|
safe1 = (torch.abs(angles[:, 1]) >= eps) |
|
safe2 = (torch.abs(angles[:, 1] - np.pi) >= eps) |
|
|
|
|
|
angles[:, 1] += offset |
|
|
|
|
|
safe_mask = torch.logical_and(safe1, safe2) |
|
angles[safe_mask, 0] = torch.atan2(dcm_transformed[safe_mask, 0, 2], |
|
-dcm_transformed[safe_mask, 1, 2]) |
|
angles[safe_mask, 2] = torch.atan2(dcm_transformed[safe_mask, 2, 0], |
|
dcm_transformed[safe_mask, 2, 1]) |
|
if extrinsic: |
|
|
|
|
|
|
|
angles[~safe_mask, 0] = 0 |
|
|
|
angles[~safe1, 2] = torch.atan2( |
|
dcm_transformed[~safe1, 1, 0] - dcm_transformed[~safe1, 0, 1], |
|
dcm_transformed[~safe1, 0, 0] + dcm_transformed[~safe1, 1, 1]) |
|
|
|
angles[~safe2, 2] = -torch.atan2( |
|
dcm_transformed[~safe2, 1, 0] + dcm_transformed[~safe2, 0, 1], |
|
dcm_transformed[~safe2, 0, 0] - dcm_transformed[~safe2, 1, 1]) |
|
else: |
|
|
|
|
|
angles[~safe_mask, 2] = 0 |
|
|
|
angles[~safe1, 0] = torch.atan2( |
|
dcm_transformed[~safe1, 1, 0] - dcm_transformed[~safe1, 0, 1], |
|
dcm_transformed[~safe1, 0, 0] + dcm_transformed[~safe1, 1, 1]) |
|
|
|
angles[~safe2, 0] = torch.atan2( |
|
dcm_transformed[~safe2, 1, 0] + dcm_transformed[~safe2, 0, 1], |
|
dcm_transformed[~safe2, 0, 0] - dcm_transformed[~safe2, 1, 1]) |
|
|
|
|
|
if seq[0] == seq[2]: |
|
|
|
adjust_mask = torch.logical_or(angles[:, 1] < 0, angles[:, 1] > np.pi) |
|
else: |
|
|
|
adjust_mask = torch.logical_or(angles[:, 1] < -np.pi / 2, |
|
angles[:, 1] > np.pi / 2) |
|
|
|
|
|
adjust_mask = torch.logical_and(adjust_mask, safe_mask) |
|
|
|
angles[adjust_mask, 0] += np.pi |
|
angles[adjust_mask, 1] = 2 * offset - angles[adjust_mask, 1] |
|
angles[adjust_mask, 2] -= np.pi |
|
|
|
angles[angles < -np.pi] += 2 * np.pi |
|
angles[angles > np.pi] -= 2 * np.pi |
|
|
|
|
|
if not torch.all(safe_mask): |
|
print("Gimbal lock detected. Setting third angle to zero since" |
|
"it is not possible to uniquely determine all angles.") |
|
|
|
|
|
|
|
if extrinsic: |
|
|
|
angles = torch.flip(angles, dims=[ |
|
-1, |
|
]) |
|
|
|
angles = angles.to(orig_device) |
|
return angles |
|
|
|
|
|
|
|
|
|
|
|
def batch_euler2axis(r): |
|
return quaternion_to_angle_axis(euler_to_quaternion(r)) |
|
|
|
|
|
def batch_euler2matrix(r): |
|
return quaternion_to_rotation_matrix(euler_to_quaternion(r)) |
|
|
|
|
|
def batch_matrix2euler(rot_mats): |
|
|
|
|
|
|
|
|
|
sy = torch.sqrt(rot_mats[:, 0, 0] * rot_mats[:, 0, 0] + |
|
rot_mats[:, 1, 0] * rot_mats[:, 1, 0]) |
|
return torch.atan2(-rot_mats[:, 2, 0], sy) |
|
|
|
|
|
def batch_matrix2axis(rot_mats): |
|
return quaternion_to_angle_axis(rotation_matrix_to_quaternion(rot_mats)) |
|
|
|
|
|
def batch_axis2matrix(theta): |
|
|
|
|
|
|
|
|
|
return quaternion_to_rotation_matrix(angle_axis_to_quaternion(theta)) |
|
|
|
|
|
def batch_axis2euler(theta): |
|
return batch_matrix2euler(batch_axis2matrix(theta)) |
|
|
|
|
|
def batch_axis2euler(r): |
|
return rot_mat_to_euler(batch_rodrigues(r)) |
|
|
|
|
|
def batch_rodrigues(rot_vecs, epsilon=1e-8, dtype=torch.float32): |
|
''' same as batch_matrix2axis |
|
Calculates the rotation matrices for a batch of rotation vectors |
|
Parameters |
|
---------- |
|
rot_vecs: torch.tensor Nx3 |
|
array of N axis-angle vectors |
|
Returns |
|
------- |
|
R: torch.tensor Nx3x3 |
|
The rotation matrices for the given axis-angle parameters |
|
Code from smplx/flame, what PS people often use |
|
''' |
|
|
|
batch_size = rot_vecs.shape[0] |
|
device = rot_vecs.device |
|
|
|
angle = torch.norm(rot_vecs + 1e-8, dim=1, keepdim=True) |
|
rot_dir = rot_vecs / angle |
|
|
|
cos = torch.unsqueeze(torch.cos(angle), dim=1) |
|
sin = torch.unsqueeze(torch.sin(angle), dim=1) |
|
|
|
|
|
rx, ry, rz = torch.split(rot_dir, 1, dim=1) |
|
K = torch.zeros((batch_size, 3, 3), dtype=dtype, device=device) |
|
|
|
zeros = torch.zeros((batch_size, 1), dtype=dtype, device=device) |
|
K = torch.cat([zeros, -rz, ry, rz, zeros, -rx, -ry, rx, zeros], dim=1) \ |
|
.view((batch_size, 3, 3)) |
|
|
|
ident = torch.eye(3, dtype=dtype, device=device).unsqueeze(dim=0) |
|
rot_mat = ident + sin * K + (1 - cos) * torch.bmm(K, K) |
|
return rot_mat |
|
|
|
|
|
def batch_cont2matrix(module_input): |
|
''' Decoder for transforming a latent representation to rotation matrices |
|
|
|
Implements the decoding method described in: |
|
"On the Continuity of Rotation Representations in Neural Networks" |
|
Code from https://github.com/vchoutas/expose |
|
''' |
|
batch_size = module_input.shape[0] |
|
reshaped_input = module_input.reshape(-1, 3, 2) |
|
|
|
|
|
b1 = F.normalize(reshaped_input[:, :, 0].clone(), dim=1) |
|
|
|
dot_prod = torch.sum(b1 * reshaped_input[:, :, 1].clone(), |
|
dim=1, |
|
keepdim=True) |
|
|
|
b2 = F.normalize(reshaped_input[:, :, 1] - dot_prod * b1, dim=1) |
|
|
|
b3 = torch.cross(b1, b2, dim=1) |
|
rot_mats = torch.stack([b1, b2, b3], dim=-1) |
|
|
|
return rot_mats.view(batch_size, -1, 3, 3) |
|
|