|
|
|
from __future__ import division |
|
import logging |
|
from utils import CheckpointSaver |
|
from tensorboardX import SummaryWriter |
|
|
|
import torch |
|
from tqdm import tqdm |
|
|
|
tqdm.monitor_interval = 0 |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
class BaseTrainer(object): |
|
"""Base class for Trainer objects. |
|
Takes care of checkpointing/logging/resuming training. |
|
""" |
|
|
|
def __init__(self, options): |
|
self.options = options |
|
if options.multiprocessing_distributed: |
|
self.device = torch.device('cuda', options.gpu) |
|
else: |
|
self.device = torch.device( |
|
'cuda' if torch.cuda.is_available() else 'cpu') |
|
|
|
self.saver = CheckpointSaver(save_dir=options.checkpoint_dir, |
|
overwrite=options.overwrite) |
|
if options.rank == 0: |
|
self.summary_writer = SummaryWriter(self.options.summary_dir) |
|
self.init_fn() |
|
|
|
self.checkpoint = None |
|
if options.resume and self.saver.exists_checkpoint(): |
|
self.checkpoint = self.saver.load_checkpoint( |
|
self.models_dict, self.optimizers_dict) |
|
|
|
if self.checkpoint is None: |
|
self.epoch_count = 0 |
|
self.step_count = 0 |
|
else: |
|
self.epoch_count = self.checkpoint['epoch'] |
|
self.step_count = self.checkpoint['total_step_count'] |
|
|
|
if self.checkpoint is not None: |
|
self.checkpoint_batch_idx = self.checkpoint['batch_idx'] |
|
else: |
|
self.checkpoint_batch_idx = 0 |
|
|
|
self.best_performance = float('inf') |
|
|
|
def load_pretrained(self, checkpoint_file=None): |
|
"""Load a pretrained checkpoint. |
|
This is different from resuming training using --resume. |
|
""" |
|
if checkpoint_file is not None: |
|
checkpoint = torch.load(checkpoint_file) |
|
for model in self.models_dict: |
|
if model in checkpoint: |
|
self.models_dict[model].load_state_dict(checkpoint[model], |
|
strict=True) |
|
print(f'Checkpoint {model} loaded') |
|
|
|
def move_dict_to_device(self, dict, device, tensor2float=False): |
|
for k, v in dict.items(): |
|
if isinstance(v, torch.Tensor): |
|
if tensor2float: |
|
dict[k] = v.float().to(device) |
|
else: |
|
dict[k] = v.to(device) |
|
|
|
|
|
def train(self, epoch): |
|
raise NotImplementedError('You need to provide an train method') |
|
|
|
def init_fn(self): |
|
raise NotImplementedError('You need to provide an _init_fn method') |
|
|
|
def train_step(self, input_batch): |
|
raise NotImplementedError('You need to provide a _train_step method') |
|
|
|
def train_summaries(self, input_batch): |
|
raise NotImplementedError( |
|
'You need to provide a _train_summaries method') |
|
|
|
def visualize(self, input_batch): |
|
raise NotImplementedError('You need to provide a visualize method') |
|
|
|
def validate(self): |
|
pass |
|
|
|
def test(self): |
|
pass |
|
|
|
def evaluate(self): |
|
pass |
|
|
|
def fit(self): |
|
|
|
for epoch in tqdm(range(self.epoch_count, self.options.num_epochs), |
|
total=self.options.num_epochs, |
|
initial=self.epoch_count): |
|
self.epoch_count = epoch |
|
self.train(epoch) |
|
return |
|
|