|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""PyTorch BERT model. """ |
|
|
|
from __future__ import absolute_import, division, print_function, unicode_literals |
|
|
|
import json |
|
import logging |
|
import math |
|
import os |
|
import sys |
|
from io import open |
|
|
|
import torch |
|
from torch import nn |
|
from torch.nn import CrossEntropyLoss, MSELoss |
|
|
|
from .modeling_utils import ( |
|
WEIGHTS_NAME, CONFIG_NAME, PretrainedConfig, PreTrainedModel, prune_linear_layer, |
|
add_start_docstrings |
|
) |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
BERT_PRETRAINED_MODEL_ARCHIVE_MAP = { |
|
'bert-base-uncased': |
|
"https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-pytorch_model.bin", |
|
'bert-large-uncased': |
|
"https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-pytorch_model.bin", |
|
'bert-base-cased': |
|
"https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-pytorch_model.bin", |
|
'bert-large-cased': |
|
"https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-pytorch_model.bin", |
|
'bert-base-multilingual-uncased': |
|
"https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-pytorch_model.bin", |
|
'bert-base-multilingual-cased': |
|
"https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-pytorch_model.bin", |
|
'bert-base-chinese': |
|
"https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-pytorch_model.bin", |
|
'bert-base-german-cased': |
|
"https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-cased-pytorch_model.bin", |
|
'bert-large-uncased-whole-word-masking': |
|
"https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-pytorch_model.bin", |
|
'bert-large-cased-whole-word-masking': |
|
"https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-pytorch_model.bin", |
|
'bert-large-uncased-whole-word-masking-finetuned-squad': |
|
"https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-finetuned-squad-pytorch_model.bin", |
|
'bert-large-cased-whole-word-masking-finetuned-squad': |
|
"https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-finetuned-squad-pytorch_model.bin", |
|
'bert-base-cased-finetuned-mrpc': |
|
"https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-finetuned-mrpc-pytorch_model.bin", |
|
} |
|
|
|
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP = { |
|
'bert-base-uncased': |
|
"https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-config.json", |
|
'bert-large-uncased': |
|
"https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-config.json", |
|
'bert-base-cased': |
|
"https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-config.json", |
|
'bert-large-cased': |
|
"https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-config.json", |
|
'bert-base-multilingual-uncased': |
|
"https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-config.json", |
|
'bert-base-multilingual-cased': |
|
"https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-config.json", |
|
'bert-base-chinese': |
|
"https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-config.json", |
|
'bert-base-german-cased': |
|
"https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-cased-config.json", |
|
'bert-large-uncased-whole-word-masking': |
|
"https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-config.json", |
|
'bert-large-cased-whole-word-masking': |
|
"https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-config.json", |
|
'bert-large-uncased-whole-word-masking-finetuned-squad': |
|
"https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-finetuned-squad-config.json", |
|
'bert-large-cased-whole-word-masking-finetuned-squad': |
|
"https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-finetuned-squad-config.json", |
|
'bert-base-cased-finetuned-mrpc': |
|
"https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-finetuned-mrpc-config.json", |
|
} |
|
|
|
|
|
def load_tf_weights_in_bert(model, config, tf_checkpoint_path): |
|
""" Load tf checkpoints in a pytorch model. |
|
""" |
|
try: |
|
import re |
|
import numpy as np |
|
import tensorflow as tf |
|
except ImportError: |
|
logger.error( |
|
"Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see " |
|
"https://www.tensorflow.org/install/ for installation instructions." |
|
) |
|
raise |
|
tf_path = os.path.abspath(tf_checkpoint_path) |
|
logger.info("Converting TensorFlow checkpoint from {}".format(tf_path)) |
|
|
|
init_vars = tf.train.list_variables(tf_path) |
|
names = [] |
|
arrays = [] |
|
for name, shape in init_vars: |
|
logger.info("Loading TF weight {} with shape {}".format(name, shape)) |
|
array = tf.train.load_variable(tf_path, name) |
|
names.append(name) |
|
arrays.append(array) |
|
|
|
for name, array in zip(names, arrays): |
|
name = name.split('/') |
|
|
|
|
|
if any(n in ["adam_v", "adam_m", "global_step"] for n in name): |
|
logger.info("Skipping {}".format("/".join(name))) |
|
continue |
|
pointer = model |
|
for m_name in name: |
|
if re.fullmatch(r'[A-Za-z]+_\d+', m_name): |
|
l = re.split(r'_(\d+)', m_name) |
|
else: |
|
l = [m_name] |
|
if l[0] == 'kernel' or l[0] == 'gamma': |
|
pointer = getattr(pointer, 'weight') |
|
elif l[0] == 'output_bias' or l[0] == 'beta': |
|
pointer = getattr(pointer, 'bias') |
|
elif l[0] == 'output_weights': |
|
pointer = getattr(pointer, 'weight') |
|
elif l[0] == 'squad': |
|
pointer = getattr(pointer, 'classifier') |
|
else: |
|
try: |
|
pointer = getattr(pointer, l[0]) |
|
except AttributeError: |
|
logger.info("Skipping {}".format("/".join(name))) |
|
continue |
|
if len(l) >= 2: |
|
num = int(l[1]) |
|
pointer = pointer[num] |
|
if m_name[-11:] == '_embeddings': |
|
pointer = getattr(pointer, 'weight') |
|
elif m_name == 'kernel': |
|
array = np.transpose(array) |
|
try: |
|
assert pointer.shape == array.shape |
|
except AssertionError as e: |
|
e.args += (pointer.shape, array.shape) |
|
raise |
|
logger.info("Initialize PyTorch weight {}".format(name)) |
|
pointer.data = torch.from_numpy(array) |
|
return model |
|
|
|
|
|
def gelu(x): |
|
"""Implementation of the gelu activation function. |
|
For information: OpenAI GPT's gelu is slightly different (and gives slightly different results): |
|
0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) |
|
Also see https://arxiv.org/abs/1606.08415 |
|
""" |
|
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0))) |
|
|
|
|
|
def swish(x): |
|
return x * torch.sigmoid(x) |
|
|
|
|
|
ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish} |
|
|
|
|
|
class BertConfig(PretrainedConfig): |
|
r""" |
|
:class:`~pytorch_transformers.BertConfig` is the configuration class to store the configuration of a |
|
`BertModel`. |
|
|
|
|
|
Arguments: |
|
vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `BertModel`. |
|
hidden_size: Size of the encoder layers and the pooler layer. |
|
num_hidden_layers: Number of hidden layers in the Transformer encoder. |
|
num_attention_heads: Number of attention heads for each attention layer in |
|
the Transformer encoder. |
|
intermediate_size: The size of the "intermediate" (i.e., feed-forward) |
|
layer in the Transformer encoder. |
|
hidden_act: The non-linear activation function (function or string) in the |
|
encoder and pooler. If string, "gelu", "relu" and "swish" are supported. |
|
hidden_dropout_prob: The dropout probabilitiy for all fully connected |
|
layers in the embeddings, encoder, and pooler. |
|
attention_probs_dropout_prob: The dropout ratio for the attention |
|
probabilities. |
|
max_position_embeddings: The maximum sequence length that this model might |
|
ever be used with. Typically set this to something large just in case |
|
(e.g., 512 or 1024 or 2048). |
|
type_vocab_size: The vocabulary size of the `token_type_ids` passed into |
|
`BertModel`. |
|
initializer_range: The sttdev of the truncated_normal_initializer for |
|
initializing all weight matrices. |
|
layer_norm_eps: The epsilon used by LayerNorm. |
|
""" |
|
pretrained_config_archive_map = BERT_PRETRAINED_CONFIG_ARCHIVE_MAP |
|
|
|
def __init__( |
|
self, |
|
vocab_size_or_config_json_file=30522, |
|
hidden_size=768, |
|
num_hidden_layers=12, |
|
num_attention_heads=12, |
|
intermediate_size=3072, |
|
hidden_act="gelu", |
|
hidden_dropout_prob=0.1, |
|
attention_probs_dropout_prob=0.1, |
|
max_position_embeddings=512, |
|
type_vocab_size=2, |
|
initializer_range=0.02, |
|
layer_norm_eps=1e-12, |
|
**kwargs |
|
): |
|
super(BertConfig, self).__init__(**kwargs) |
|
if isinstance( |
|
vocab_size_or_config_json_file, str |
|
) or (sys.version_info[0] == 2 and isinstance(vocab_size_or_config_json_file, unicode)): |
|
with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader: |
|
json_config = json.loads(reader.read()) |
|
for key, value in json_config.items(): |
|
self.__dict__[key] = value |
|
elif isinstance(vocab_size_or_config_json_file, int): |
|
self.vocab_size = vocab_size_or_config_json_file |
|
self.hidden_size = hidden_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.hidden_act = hidden_act |
|
self.intermediate_size = intermediate_size |
|
self.hidden_dropout_prob = hidden_dropout_prob |
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob |
|
self.max_position_embeddings = max_position_embeddings |
|
self.type_vocab_size = type_vocab_size |
|
self.initializer_range = initializer_range |
|
self.layer_norm_eps = layer_norm_eps |
|
else: |
|
raise ValueError( |
|
"First argument must be either a vocabulary size (int)" |
|
"or the path to a pretrained model config file (str)" |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class BertLayerNorm(nn.Module): |
|
def __init__(self, hidden_size, eps=1e-12): |
|
"""Construct a layernorm module in the TF style (epsilon inside the square root). |
|
""" |
|
super(BertLayerNorm, self).__init__() |
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
self.bias = nn.Parameter(torch.zeros(hidden_size)) |
|
self.variance_epsilon = eps |
|
|
|
def forward(self, x): |
|
u = x.mean(-1, keepdim=True) |
|
s = (x - u).pow(2).mean(-1, keepdim=True) |
|
x = (x - u) / torch.sqrt(s + self.variance_epsilon) |
|
return self.weight * x + self.bias |
|
|
|
|
|
class BertEmbeddings(nn.Module): |
|
"""Construct the embeddings from word, position and token_type embeddings. |
|
""" |
|
def __init__(self, config): |
|
super(BertEmbeddings, self).__init__() |
|
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=0) |
|
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) |
|
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) |
|
|
|
|
|
|
|
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
def forward(self, input_ids, token_type_ids=None, position_ids=None): |
|
seq_length = input_ids.size(1) |
|
if position_ids is None: |
|
position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device) |
|
position_ids = position_ids.unsqueeze(0).expand_as(input_ids) |
|
if token_type_ids is None: |
|
token_type_ids = torch.zeros_like(input_ids) |
|
|
|
words_embeddings = self.word_embeddings(input_ids) |
|
position_embeddings = self.position_embeddings(position_ids) |
|
token_type_embeddings = self.token_type_embeddings(token_type_ids) |
|
|
|
embeddings = words_embeddings + position_embeddings + token_type_embeddings |
|
embeddings = self.LayerNorm(embeddings) |
|
embeddings = self.dropout(embeddings) |
|
return embeddings |
|
|
|
|
|
class BertSelfAttention(nn.Module): |
|
def __init__(self, config): |
|
super(BertSelfAttention, self).__init__() |
|
if config.hidden_size % config.num_attention_heads != 0: |
|
raise ValueError( |
|
"The hidden size (%d) is not a multiple of the number of attention " |
|
"heads (%d)" % (config.hidden_size, config.num_attention_heads) |
|
) |
|
self.output_attentions = config.output_attentions |
|
|
|
self.num_attention_heads = config.num_attention_heads |
|
self.attention_head_size = int(config.hidden_size / config.num_attention_heads) |
|
self.all_head_size = self.num_attention_heads * self.attention_head_size |
|
|
|
self.query = nn.Linear(config.hidden_size, self.all_head_size) |
|
self.key = nn.Linear(config.hidden_size, self.all_head_size) |
|
self.value = nn.Linear(config.hidden_size, self.all_head_size) |
|
|
|
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) |
|
|
|
def transpose_for_scores(self, x): |
|
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) |
|
x = x.view(*new_x_shape) |
|
return x.permute(0, 2, 1, 3) |
|
|
|
def forward(self, hidden_states, attention_mask, head_mask=None): |
|
mixed_query_layer = self.query(hidden_states) |
|
mixed_key_layer = self.key(hidden_states) |
|
mixed_value_layer = self.value(hidden_states) |
|
|
|
query_layer = self.transpose_for_scores(mixed_query_layer) |
|
key_layer = self.transpose_for_scores(mixed_key_layer) |
|
value_layer = self.transpose_for_scores(mixed_value_layer) |
|
|
|
|
|
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) |
|
attention_scores = attention_scores / math.sqrt(self.attention_head_size) |
|
|
|
attention_scores = attention_scores + attention_mask |
|
|
|
|
|
attention_probs = nn.Softmax(dim=-1)(attention_scores) |
|
|
|
|
|
|
|
attention_probs = self.dropout(attention_probs) |
|
|
|
|
|
if head_mask is not None: |
|
attention_probs = attention_probs * head_mask |
|
|
|
context_layer = torch.matmul(attention_probs, value_layer) |
|
|
|
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() |
|
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size, ) |
|
context_layer = context_layer.view(*new_context_layer_shape) |
|
|
|
outputs = (context_layer, attention_probs) if self.output_attentions else (context_layer, ) |
|
return outputs |
|
|
|
|
|
class BertSelfOutput(nn.Module): |
|
def __init__(self, config): |
|
super(BertSelfOutput, self).__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
def forward(self, hidden_states, input_tensor): |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = self.LayerNorm(hidden_states + input_tensor) |
|
return hidden_states |
|
|
|
|
|
class BertAttention(nn.Module): |
|
def __init__(self, config): |
|
super(BertAttention, self).__init__() |
|
self.self = BertSelfAttention(config) |
|
self.output = BertSelfOutput(config) |
|
|
|
def prune_heads(self, heads): |
|
if len(heads) == 0: |
|
return |
|
mask = torch.ones(self.self.num_attention_heads, self.self.attention_head_size) |
|
for head in heads: |
|
mask[head] = 0 |
|
mask = mask.view(-1).contiguous().eq(1) |
|
index = torch.arange(len(mask))[mask].long() |
|
|
|
self.self.query = prune_linear_layer(self.self.query, index) |
|
self.self.key = prune_linear_layer(self.self.key, index) |
|
self.self.value = prune_linear_layer(self.self.value, index) |
|
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) |
|
|
|
self.self.num_attention_heads = self.self.num_attention_heads - len(heads) |
|
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads |
|
|
|
def forward(self, input_tensor, attention_mask, head_mask=None): |
|
self_outputs = self.self(input_tensor, attention_mask, head_mask) |
|
attention_output = self.output(self_outputs[0], input_tensor) |
|
outputs = (attention_output, ) + self_outputs[1:] |
|
return outputs |
|
|
|
|
|
class BertIntermediate(nn.Module): |
|
def __init__(self, config): |
|
super(BertIntermediate, self).__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.intermediate_size) |
|
if isinstance(config.hidden_act, str |
|
) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)): |
|
self.intermediate_act_fn = ACT2FN[config.hidden_act] |
|
else: |
|
self.intermediate_act_fn = config.hidden_act |
|
|
|
def forward(self, hidden_states): |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.intermediate_act_fn(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class BertOutput(nn.Module): |
|
def __init__(self, config): |
|
super(BertOutput, self).__init__() |
|
self.dense = nn.Linear(config.intermediate_size, config.hidden_size) |
|
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
def forward(self, hidden_states, input_tensor): |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = self.LayerNorm(hidden_states + input_tensor) |
|
return hidden_states |
|
|
|
|
|
class BertLayer(nn.Module): |
|
def __init__(self, config): |
|
super(BertLayer, self).__init__() |
|
self.attention = BertAttention(config) |
|
self.intermediate = BertIntermediate(config) |
|
self.output = BertOutput(config) |
|
|
|
def forward(self, hidden_states, attention_mask, head_mask=None): |
|
attention_outputs = self.attention(hidden_states, attention_mask, head_mask) |
|
attention_output = attention_outputs[0] |
|
intermediate_output = self.intermediate(attention_output) |
|
layer_output = self.output(intermediate_output, attention_output) |
|
outputs = (layer_output, ) + attention_outputs[1:] |
|
return outputs |
|
|
|
|
|
class BertEncoder(nn.Module): |
|
def __init__(self, config): |
|
super(BertEncoder, self).__init__() |
|
self.output_attentions = config.output_attentions |
|
self.output_hidden_states = config.output_hidden_states |
|
self.layer = nn.ModuleList([BertLayer(config) for _ in range(config.num_hidden_layers)]) |
|
|
|
def forward(self, hidden_states, attention_mask, head_mask=None): |
|
all_hidden_states = () |
|
all_attentions = () |
|
for i, layer_module in enumerate(self.layer): |
|
if self.output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states, ) |
|
|
|
layer_outputs = layer_module(hidden_states, attention_mask, head_mask[i]) |
|
hidden_states = layer_outputs[0] |
|
|
|
if self.output_attentions: |
|
all_attentions = all_attentions + (layer_outputs[1], ) |
|
|
|
|
|
if self.output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states, ) |
|
|
|
outputs = (hidden_states, ) |
|
if self.output_hidden_states: |
|
outputs = outputs + (all_hidden_states, ) |
|
if self.output_attentions: |
|
outputs = outputs + (all_attentions, ) |
|
return outputs |
|
|
|
|
|
class BertPooler(nn.Module): |
|
def __init__(self, config): |
|
super(BertPooler, self).__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
self.activation = nn.Tanh() |
|
|
|
def forward(self, hidden_states): |
|
|
|
|
|
first_token_tensor = hidden_states[:, 0] |
|
pooled_output = self.dense(first_token_tensor) |
|
pooled_output = self.activation(pooled_output) |
|
return pooled_output |
|
|
|
|
|
class BertPredictionHeadTransform(nn.Module): |
|
def __init__(self, config): |
|
super(BertPredictionHeadTransform, self).__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
if isinstance(config.hidden_act, str |
|
) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)): |
|
self.transform_act_fn = ACT2FN[config.hidden_act] |
|
else: |
|
self.transform_act_fn = config.hidden_act |
|
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
|
|
def forward(self, hidden_states): |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.transform_act_fn(hidden_states) |
|
hidden_states = self.LayerNorm(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class BertLMPredictionHead(nn.Module): |
|
def __init__(self, config): |
|
super(BertLMPredictionHead, self).__init__() |
|
self.transform = BertPredictionHeadTransform(config) |
|
|
|
|
|
|
|
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
self.bias = nn.Parameter(torch.zeros(config.vocab_size)) |
|
|
|
def forward(self, hidden_states): |
|
hidden_states = self.transform(hidden_states) |
|
hidden_states = self.decoder(hidden_states) + self.bias |
|
return hidden_states |
|
|
|
|
|
class BertOnlyMLMHead(nn.Module): |
|
def __init__(self, config): |
|
super(BertOnlyMLMHead, self).__init__() |
|
self.predictions = BertLMPredictionHead(config) |
|
|
|
def forward(self, sequence_output): |
|
prediction_scores = self.predictions(sequence_output) |
|
return prediction_scores |
|
|
|
|
|
class BertOnlyNSPHead(nn.Module): |
|
def __init__(self, config): |
|
super(BertOnlyNSPHead, self).__init__() |
|
self.seq_relationship = nn.Linear(config.hidden_size, 2) |
|
|
|
def forward(self, pooled_output): |
|
seq_relationship_score = self.seq_relationship(pooled_output) |
|
return seq_relationship_score |
|
|
|
|
|
class BertPreTrainingHeads(nn.Module): |
|
def __init__(self, config): |
|
super(BertPreTrainingHeads, self).__init__() |
|
self.predictions = BertLMPredictionHead(config) |
|
self.seq_relationship = nn.Linear(config.hidden_size, 2) |
|
|
|
def forward(self, sequence_output, pooled_output): |
|
prediction_scores = self.predictions(sequence_output) |
|
seq_relationship_score = self.seq_relationship(pooled_output) |
|
return prediction_scores, seq_relationship_score |
|
|
|
|
|
class BertPreTrainedModel(PreTrainedModel): |
|
""" An abstract class to handle weights initialization and |
|
a simple interface for dowloading and loading pretrained models. |
|
""" |
|
config_class = BertConfig |
|
pretrained_model_archive_map = BERT_PRETRAINED_MODEL_ARCHIVE_MAP |
|
load_tf_weights = load_tf_weights_in_bert |
|
base_model_prefix = "bert" |
|
|
|
def __init__(self, *inputs, **kwargs): |
|
super(BertPreTrainedModel, self).__init__(*inputs, **kwargs) |
|
|
|
def init_weights(self, module): |
|
""" Initialize the weights. |
|
""" |
|
if isinstance(module, (nn.Linear, nn.Embedding)): |
|
|
|
|
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
elif isinstance(module, BertLayerNorm): |
|
module.bias.data.zero_() |
|
module.weight.data.fill_(1.0) |
|
if isinstance(module, nn.Linear) and module.bias is not None: |
|
module.bias.data.zero_() |
|
|
|
|
|
BERT_START_DOCSTRING = r""" The BERT model was proposed in |
|
`BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding`_ |
|
by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova. It's a bidirectional transformer |
|
pre-trained using a combination of masked language modeling objective and next sentence prediction |
|
on a large corpus comprising the Toronto Book Corpus and Wikipedia. |
|
|
|
This model is a PyTorch `torch.nn.Module`_ sub-class. Use it as a regular PyTorch Module and |
|
refer to the PyTorch documentation for all matter related to general usage and behavior. |
|
|
|
.. _`BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding`: |
|
https://arxiv.org/abs/1810.04805 |
|
|
|
.. _`torch.nn.Module`: |
|
https://pytorch.org/docs/stable/nn.html#module |
|
|
|
Parameters: |
|
config (:class:`~pytorch_transformers.BertConfig`): Model configuration class with all the parameters of the model. |
|
""" |
|
|
|
BERT_INPUTS_DOCSTRING = r""" |
|
Inputs: |
|
**input_ids**: ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``: |
|
Indices of input sequence tokens in the vocabulary. |
|
To match pre-training, BERT input sequence should be formatted with [CLS] and [SEP] tokens as follows: |
|
|
|
(a) For sequence pairs: |
|
|
|
``tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]`` |
|
|
|
``token_type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1`` |
|
|
|
(b) For single sequences: |
|
|
|
``tokens: [CLS] the dog is hairy . [SEP]`` |
|
|
|
``token_type_ids: 0 0 0 0 0 0 0`` |
|
|
|
Indices can be obtained using :class:`pytorch_transformers.BertTokenizer`. |
|
See :func:`pytorch_transformers.PreTrainedTokenizer.encode` and |
|
:func:`pytorch_transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details. |
|
**position_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``: |
|
Indices of positions of each input sequence tokens in the position embeddings. |
|
Selected in the range ``[0, config.max_position_embeddings - 1[``. |
|
**token_type_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``: |
|
Segment token indices to indicate first and second portions of the inputs. |
|
Indices are selected in ``[0, 1]``: ``0`` corresponds to a `sentence A` token, ``1`` |
|
corresponds to a `sentence B` token |
|
(see `BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding`_ for more details). |
|
**attention_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, sequence_length)``: |
|
Mask to avoid performing attention on padding token indices. |
|
Mask values selected in ``[0, 1]``: |
|
``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens. |
|
**head_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``: |
|
Mask to nullify selected heads of the self-attention modules. |
|
Mask values selected in ``[0, 1]``: |
|
``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare Bert Model transformer outputing raw hidden-states without any specific head on top.", |
|
BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING |
|
) |
|
class BertModel(BertPreTrainedModel): |
|
r""" |
|
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: |
|
**last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)`` |
|
Sequence of hidden-states at the output of the last layer of the model. |
|
**pooler_output**: ``torch.FloatTensor`` of shape ``(batch_size, hidden_size)`` |
|
Last layer hidden-state of the first token of the sequence (classification token) |
|
further processed by a Linear layer and a Tanh activation function. The Linear |
|
layer weights are trained from the next sentence prediction (classification) |
|
objective during Bert pretraining. This output is usually *not* a good summary |
|
of the semantic content of the input, you're often better with averaging or pooling |
|
the sequence of hidden-states for the whole input sequence. |
|
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) |
|
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) |
|
of shape ``(batch_size, sequence_length, hidden_size)``: |
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs. |
|
**attentions**: (`optional`, returned when ``config.output_attentions=True``) |
|
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: |
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. |
|
|
|
Examples:: |
|
|
|
>>> config = BertConfig.from_pretrained('bert-base-uncased') |
|
>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') |
|
>>> model = BertModel(config) |
|
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 |
|
>>> outputs = model(input_ids) |
|
>>> last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple |
|
|
|
""" |
|
def __init__(self, config): |
|
super(BertModel, self).__init__(config) |
|
|
|
self.embeddings = BertEmbeddings(config) |
|
self.encoder = BertEncoder(config) |
|
self.pooler = BertPooler(config) |
|
|
|
self.apply(self.init_weights) |
|
|
|
def _resize_token_embeddings(self, new_num_tokens): |
|
old_embeddings = self.embeddings.word_embeddings |
|
new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens) |
|
self.embeddings.word_embeddings = new_embeddings |
|
return self.embeddings.word_embeddings |
|
|
|
def _prune_heads(self, heads_to_prune): |
|
""" Prunes heads of the model. |
|
heads_to_prune: dict of {layer_num: list of heads to prune in this layer} |
|
See base class PreTrainedModel |
|
""" |
|
for layer, heads in heads_to_prune.items(): |
|
self.encoder.layer[layer].attention.prune_heads(heads) |
|
|
|
def forward( |
|
self, |
|
input_ids, |
|
token_type_ids=None, |
|
attention_mask=None, |
|
position_ids=None, |
|
head_mask=None |
|
): |
|
if attention_mask is None: |
|
attention_mask = torch.ones_like(input_ids) |
|
if token_type_ids is None: |
|
token_type_ids = torch.zeros_like(input_ids) |
|
|
|
|
|
|
|
|
|
|
|
|
|
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) |
|
|
|
|
|
|
|
|
|
|
|
|
|
extended_attention_mask = extended_attention_mask.to( |
|
dtype=next(self.parameters()).dtype |
|
) |
|
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
if head_mask is not None: |
|
if head_mask.dim() == 1: |
|
head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1) |
|
head_mask = head_mask.expand(self.config.num_hidden_layers, -1, -1, -1, -1) |
|
elif head_mask.dim() == 2: |
|
head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze( |
|
-1 |
|
) |
|
head_mask = head_mask.to( |
|
dtype=next(self.parameters()).dtype |
|
) |
|
else: |
|
head_mask = [None] * self.config.num_hidden_layers |
|
|
|
embedding_output = self.embeddings( |
|
input_ids, position_ids=position_ids, token_type_ids=token_type_ids |
|
) |
|
encoder_outputs = self.encoder( |
|
embedding_output, extended_attention_mask, head_mask=head_mask |
|
) |
|
sequence_output = encoder_outputs[0] |
|
pooled_output = self.pooler(sequence_output) |
|
|
|
outputs = ( |
|
sequence_output, |
|
pooled_output, |
|
) + encoder_outputs[1:] |
|
return outputs |
|
|
|
|
|
@add_start_docstrings( |
|
"""Bert Model with two heads on top as done during the pre-training: |
|
a `masked language modeling` head and a `next sentence prediction (classification)` head. """, |
|
BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING |
|
) |
|
class BertForPreTraining(BertPreTrainedModel): |
|
r""" |
|
**masked_lm_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``: |
|
Labels for computing the masked language modeling loss. |
|
Indices should be in ``[-1, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) |
|
Tokens with indices set to ``-1`` are ignored (masked), the loss is only computed for the tokens with labels |
|
in ``[0, ..., config.vocab_size]`` |
|
**next_sentence_label**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``: |
|
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see ``input_ids`` docstring) |
|
Indices should be in ``[0, 1]``. |
|
``0`` indicates sequence B is a continuation of sequence A, |
|
``1`` indicates sequence B is a random sequence. |
|
|
|
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: |
|
**loss**: (`optional`, returned when both ``masked_lm_labels`` and ``next_sentence_label`` are provided) ``torch.FloatTensor`` of shape ``(1,)``: |
|
Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss. |
|
**prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)`` |
|
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). |
|
**seq_relationship_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, 2)`` |
|
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax). |
|
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) |
|
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) |
|
of shape ``(batch_size, sequence_length, hidden_size)``: |
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs. |
|
**attentions**: (`optional`, returned when ``config.output_attentions=True``) |
|
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: |
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. |
|
|
|
Examples:: |
|
|
|
>>> config = BertConfig.from_pretrained('bert-base-uncased') |
|
>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') |
|
>>> |
|
>>> model = BertForPreTraining(config) |
|
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 |
|
>>> outputs = model(input_ids) |
|
>>> prediction_scores, seq_relationship_scores = outputs[:2] |
|
|
|
""" |
|
def __init__(self, config): |
|
super(BertForPreTraining, self).__init__(config) |
|
|
|
self.bert = BertModel(config) |
|
self.cls = BertPreTrainingHeads(config) |
|
|
|
self.apply(self.init_weights) |
|
self.tie_weights() |
|
|
|
def tie_weights(self): |
|
""" Make sure we are sharing the input and output embeddings. |
|
Export to TorchScript can't handle parameter sharing so we are cloning them instead. |
|
""" |
|
self._tie_or_clone_weights( |
|
self.cls.predictions.decoder, self.bert.embeddings.word_embeddings |
|
) |
|
|
|
def forward( |
|
self, |
|
input_ids, |
|
token_type_ids=None, |
|
attention_mask=None, |
|
masked_lm_labels=None, |
|
next_sentence_label=None, |
|
position_ids=None, |
|
head_mask=None |
|
): |
|
outputs = self.bert( |
|
input_ids, |
|
position_ids=position_ids, |
|
token_type_ids=token_type_ids, |
|
attention_mask=attention_mask, |
|
head_mask=head_mask |
|
) |
|
|
|
sequence_output, pooled_output = outputs[:2] |
|
prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output) |
|
|
|
outputs = ( |
|
prediction_scores, |
|
seq_relationship_score, |
|
) + outputs[2:] |
|
|
|
if masked_lm_labels is not None and next_sentence_label is not None: |
|
loss_fct = CrossEntropyLoss(ignore_index=-1) |
|
masked_lm_loss = loss_fct( |
|
prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1) |
|
) |
|
next_sentence_loss = loss_fct( |
|
seq_relationship_score.view(-1, 2), next_sentence_label.view(-1) |
|
) |
|
total_loss = masked_lm_loss + next_sentence_loss |
|
outputs = (total_loss, ) + outputs |
|
|
|
return outputs |
|
|
|
|
|
@add_start_docstrings( |
|
"""Bert Model with a `language modeling` head on top. """, BERT_START_DOCSTRING, |
|
BERT_INPUTS_DOCSTRING |
|
) |
|
class BertForMaskedLM(BertPreTrainedModel): |
|
r""" |
|
**masked_lm_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``: |
|
Labels for computing the masked language modeling loss. |
|
Indices should be in ``[-1, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) |
|
Tokens with indices set to ``-1`` are ignored (masked), the loss is only computed for the tokens with labels |
|
in ``[0, ..., config.vocab_size]`` |
|
|
|
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: |
|
**loss**: (`optional`, returned when ``masked_lm_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: |
|
Masked language modeling loss. |
|
**prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)`` |
|
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). |
|
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) |
|
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) |
|
of shape ``(batch_size, sequence_length, hidden_size)``: |
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs. |
|
**attentions**: (`optional`, returned when ``config.output_attentions=True``) |
|
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: |
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. |
|
|
|
Examples:: |
|
|
|
>>> config = BertConfig.from_pretrained('bert-base-uncased') |
|
>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') |
|
>>> |
|
>>> model = BertForMaskedLM(config) |
|
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 |
|
>>> outputs = model(input_ids, masked_lm_labels=input_ids) |
|
>>> loss, prediction_scores = outputs[:2] |
|
|
|
""" |
|
def __init__(self, config): |
|
super(BertForMaskedLM, self).__init__(config) |
|
|
|
self.bert = BertModel(config) |
|
self.cls = BertOnlyMLMHead(config) |
|
|
|
self.apply(self.init_weights) |
|
self.tie_weights() |
|
|
|
def tie_weights(self): |
|
""" Make sure we are sharing the input and output embeddings. |
|
Export to TorchScript can't handle parameter sharing so we are cloning them instead. |
|
""" |
|
self._tie_or_clone_weights( |
|
self.cls.predictions.decoder, self.bert.embeddings.word_embeddings |
|
) |
|
|
|
def forward( |
|
self, |
|
input_ids, |
|
token_type_ids=None, |
|
attention_mask=None, |
|
masked_lm_labels=None, |
|
position_ids=None, |
|
head_mask=None |
|
): |
|
outputs = self.bert( |
|
input_ids, |
|
position_ids=position_ids, |
|
token_type_ids=token_type_ids, |
|
attention_mask=attention_mask, |
|
head_mask=head_mask |
|
) |
|
|
|
sequence_output = outputs[0] |
|
prediction_scores = self.cls(sequence_output) |
|
|
|
outputs = (prediction_scores, |
|
) + outputs[2:] |
|
if masked_lm_labels is not None: |
|
loss_fct = CrossEntropyLoss(ignore_index=-1) |
|
masked_lm_loss = loss_fct( |
|
prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1) |
|
) |
|
outputs = (masked_lm_loss, ) + outputs |
|
|
|
return outputs |
|
|
|
|
|
@add_start_docstrings( |
|
"""Bert Model with a `next sentence prediction (classification)` head on top. """, |
|
BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING |
|
) |
|
class BertForNextSentencePrediction(BertPreTrainedModel): |
|
r""" |
|
**next_sentence_label**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``: |
|
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see ``input_ids`` docstring) |
|
Indices should be in ``[0, 1]``. |
|
``0`` indicates sequence B is a continuation of sequence A, |
|
``1`` indicates sequence B is a random sequence. |
|
|
|
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: |
|
**loss**: (`optional`, returned when ``next_sentence_label`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: |
|
Next sequence prediction (classification) loss. |
|
**seq_relationship_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, 2)`` |
|
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax). |
|
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) |
|
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) |
|
of shape ``(batch_size, sequence_length, hidden_size)``: |
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs. |
|
**attentions**: (`optional`, returned when ``config.output_attentions=True``) |
|
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: |
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. |
|
|
|
Examples:: |
|
|
|
>>> config = BertConfig.from_pretrained('bert-base-uncased') |
|
>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') |
|
>>> |
|
>>> model = BertForNextSentencePrediction(config) |
|
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 |
|
>>> outputs = model(input_ids) |
|
>>> seq_relationship_scores = outputs[0] |
|
|
|
""" |
|
def __init__(self, config): |
|
super(BertForNextSentencePrediction, self).__init__(config) |
|
|
|
self.bert = BertModel(config) |
|
self.cls = BertOnlyNSPHead(config) |
|
|
|
self.apply(self.init_weights) |
|
|
|
def forward( |
|
self, |
|
input_ids, |
|
token_type_ids=None, |
|
attention_mask=None, |
|
next_sentence_label=None, |
|
position_ids=None, |
|
head_mask=None |
|
): |
|
outputs = self.bert( |
|
input_ids, |
|
position_ids=position_ids, |
|
token_type_ids=token_type_ids, |
|
attention_mask=attention_mask, |
|
head_mask=head_mask |
|
) |
|
pooled_output = outputs[1] |
|
|
|
seq_relationship_score = self.cls(pooled_output) |
|
|
|
outputs = (seq_relationship_score, |
|
) + outputs[2:] |
|
if next_sentence_label is not None: |
|
loss_fct = CrossEntropyLoss(ignore_index=-1) |
|
next_sentence_loss = loss_fct( |
|
seq_relationship_score.view(-1, 2), next_sentence_label.view(-1) |
|
) |
|
outputs = (next_sentence_loss, ) + outputs |
|
|
|
return outputs |
|
|
|
|
|
@add_start_docstrings( |
|
"""Bert Model transformer with a sequence classification/regression head on top (a linear layer on top of |
|
the pooled output) e.g. for GLUE tasks. """, BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING |
|
) |
|
class BertForSequenceClassification(BertPreTrainedModel): |
|
r""" |
|
**labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``: |
|
Labels for computing the sequence classification/regression loss. |
|
Indices should be in ``[0, ..., config.num_labels]``. |
|
If ``config.num_labels == 1`` a regression loss is computed (Mean-Square loss), |
|
If ``config.num_labels > 1`` a classification loss is computed (Cross-Entropy). |
|
|
|
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: |
|
**loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: |
|
Classification (or regression if config.num_labels==1) loss. |
|
**logits**: ``torch.FloatTensor`` of shape ``(batch_size, config.num_labels)`` |
|
Classification (or regression if config.num_labels==1) scores (before SoftMax). |
|
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) |
|
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) |
|
of shape ``(batch_size, sequence_length, hidden_size)``: |
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs. |
|
**attentions**: (`optional`, returned when ``config.output_attentions=True``) |
|
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: |
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. |
|
|
|
Examples:: |
|
|
|
>>> config = BertConfig.from_pretrained('bert-base-uncased') |
|
>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') |
|
>>> |
|
>>> model = BertForSequenceClassification(config) |
|
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 |
|
>>> labels = torch.tensor([1]).unsqueeze(0) # Batch size 1 |
|
>>> outputs = model(input_ids, labels=labels) |
|
>>> loss, logits = outputs[:2] |
|
|
|
""" |
|
def __init__(self, config): |
|
super(BertForSequenceClassification, self).__init__(config) |
|
self.num_labels = config.num_labels |
|
|
|
self.bert = BertModel(config) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
self.classifier = nn.Linear(config.hidden_size, self.config.num_labels) |
|
|
|
self.apply(self.init_weights) |
|
|
|
def forward( |
|
self, |
|
input_ids, |
|
token_type_ids=None, |
|
attention_mask=None, |
|
labels=None, |
|
position_ids=None, |
|
head_mask=None |
|
): |
|
outputs = self.bert( |
|
input_ids, |
|
position_ids=position_ids, |
|
token_type_ids=token_type_ids, |
|
attention_mask=attention_mask, |
|
head_mask=head_mask |
|
) |
|
pooled_output = outputs[1] |
|
|
|
pooled_output = self.dropout(pooled_output) |
|
logits = self.classifier(pooled_output) |
|
|
|
outputs = (logits, ) + outputs[2:] |
|
|
|
if labels is not None: |
|
if self.num_labels == 1: |
|
|
|
loss_fct = MSELoss() |
|
loss = loss_fct(logits.view(-1), labels.view(-1)) |
|
else: |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) |
|
outputs = (loss, ) + outputs |
|
|
|
return outputs |
|
|
|
|
|
@add_start_docstrings( |
|
"""Bert Model with a multiple choice classification head on top (a linear layer on top of |
|
the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, BERT_START_DOCSTRING |
|
) |
|
class BertForMultipleChoice(BertPreTrainedModel): |
|
r""" |
|
Inputs: |
|
**input_ids**: ``torch.LongTensor`` of shape ``(batch_size, num_choices, sequence_length)``: |
|
Indices of input sequence tokens in the vocabulary. |
|
The second dimension of the input (`num_choices`) indicates the number of choices to score. |
|
To match pre-training, BERT input sequence should be formatted with [CLS] and [SEP] tokens as follows: |
|
|
|
(a) For sequence pairs: |
|
|
|
``tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]`` |
|
|
|
``token_type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1`` |
|
|
|
(b) For single sequences: |
|
|
|
``tokens: [CLS] the dog is hairy . [SEP]`` |
|
|
|
``token_type_ids: 0 0 0 0 0 0 0`` |
|
|
|
Indices can be obtained using :class:`pytorch_transformers.BertTokenizer`. |
|
See :func:`pytorch_transformers.PreTrainedTokenizer.encode` and |
|
:func:`pytorch_transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details. |
|
**token_type_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, num_choices, sequence_length)``: |
|
Segment token indices to indicate first and second portions of the inputs. |
|
The second dimension of the input (`num_choices`) indicates the number of choices to score. |
|
Indices are selected in ``[0, 1]``: ``0`` corresponds to a `sentence A` token, ``1`` |
|
corresponds to a `sentence B` token |
|
(see `BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding`_ for more details). |
|
**attention_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, num_choices, sequence_length)``: |
|
Mask to avoid performing attention on padding token indices. |
|
The second dimension of the input (`num_choices`) indicates the number of choices to score. |
|
Mask values selected in ``[0, 1]``: |
|
``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens. |
|
**head_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``: |
|
Mask to nullify selected heads of the self-attention modules. |
|
Mask values selected in ``[0, 1]``: |
|
``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**. |
|
**labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``: |
|
Labels for computing the multiple choice classification loss. |
|
Indices should be in ``[0, ..., num_choices]`` where `num_choices` is the size of the second dimension |
|
of the input tensors. (see `input_ids` above) |
|
|
|
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: |
|
**loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: |
|
Classification loss. |
|
**classification_scores**: ``torch.FloatTensor`` of shape ``(batch_size, num_choices)`` where `num_choices` is the size of the second dimension |
|
of the input tensors. (see `input_ids` above). |
|
Classification scores (before SoftMax). |
|
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) |
|
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) |
|
of shape ``(batch_size, sequence_length, hidden_size)``: |
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs. |
|
**attentions**: (`optional`, returned when ``config.output_attentions=True``) |
|
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: |
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. |
|
|
|
Examples:: |
|
|
|
>>> config = BertConfig.from_pretrained('bert-base-uncased') |
|
>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') |
|
>>> |
|
>>> model = BertForMultipleChoice(config) |
|
>>> choices = ["Hello, my dog is cute", "Hello, my cat is amazing"] |
|
>>> input_ids = torch.tensor([tokenizer.encode(s) for s in choices]).unsqueeze(0) # Batch size 1, 2 choices |
|
>>> labels = torch.tensor(1).unsqueeze(0) # Batch size 1 |
|
>>> outputs = model(input_ids, labels=labels) |
|
>>> loss, classification_scores = outputs[:2] |
|
|
|
""" |
|
def __init__(self, config): |
|
super(BertForMultipleChoice, self).__init__(config) |
|
|
|
self.bert = BertModel(config) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
self.classifier = nn.Linear(config.hidden_size, 1) |
|
|
|
self.apply(self.init_weights) |
|
|
|
def forward( |
|
self, |
|
input_ids, |
|
token_type_ids=None, |
|
attention_mask=None, |
|
labels=None, |
|
position_ids=None, |
|
head_mask=None |
|
): |
|
num_choices = input_ids.shape[1] |
|
|
|
flat_input_ids = input_ids.view(-1, input_ids.size(-1)) |
|
flat_position_ids = position_ids.view( |
|
-1, position_ids.size(-1) |
|
) if position_ids is not None else None |
|
flat_token_type_ids = token_type_ids.view( |
|
-1, token_type_ids.size(-1) |
|
) if token_type_ids is not None else None |
|
flat_attention_mask = attention_mask.view( |
|
-1, attention_mask.size(-1) |
|
) if attention_mask is not None else None |
|
outputs = self.bert( |
|
flat_input_ids, |
|
position_ids=flat_position_ids, |
|
token_type_ids=flat_token_type_ids, |
|
attention_mask=flat_attention_mask, |
|
head_mask=head_mask |
|
) |
|
pooled_output = outputs[1] |
|
|
|
pooled_output = self.dropout(pooled_output) |
|
logits = self.classifier(pooled_output) |
|
reshaped_logits = logits.view(-1, num_choices) |
|
|
|
outputs = (reshaped_logits, |
|
) + outputs[2:] |
|
|
|
if labels is not None: |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(reshaped_logits, labels) |
|
outputs = (loss, ) + outputs |
|
|
|
return outputs |
|
|
|
|
|
@add_start_docstrings( |
|
"""Bert Model with a token classification head on top (a linear layer on top of |
|
the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, |
|
BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING |
|
) |
|
class BertForTokenClassification(BertPreTrainedModel): |
|
r""" |
|
**labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``: |
|
Labels for computing the token classification loss. |
|
Indices should be in ``[0, ..., config.num_labels]``. |
|
|
|
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: |
|
**loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: |
|
Classification loss. |
|
**scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.num_labels)`` |
|
Classification scores (before SoftMax). |
|
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) |
|
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) |
|
of shape ``(batch_size, sequence_length, hidden_size)``: |
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs. |
|
**attentions**: (`optional`, returned when ``config.output_attentions=True``) |
|
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: |
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. |
|
|
|
Examples:: |
|
|
|
>>> config = BertConfig.from_pretrained('bert-base-uncased') |
|
>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') |
|
>>> |
|
>>> model = BertForTokenClassification(config) |
|
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 |
|
>>> labels = torch.tensor([1] * input_ids.size(1)).unsqueeze(0) # Batch size 1 |
|
>>> outputs = model(input_ids, labels=labels) |
|
>>> loss, scores = outputs[:2] |
|
|
|
""" |
|
def __init__(self, config): |
|
super(BertForTokenClassification, self).__init__(config) |
|
self.num_labels = config.num_labels |
|
|
|
self.bert = BertModel(config) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
self.classifier = nn.Linear(config.hidden_size, config.num_labels) |
|
|
|
self.apply(self.init_weights) |
|
|
|
def forward( |
|
self, |
|
input_ids, |
|
token_type_ids=None, |
|
attention_mask=None, |
|
labels=None, |
|
position_ids=None, |
|
head_mask=None |
|
): |
|
outputs = self.bert( |
|
input_ids, |
|
position_ids=position_ids, |
|
token_type_ids=token_type_ids, |
|
attention_mask=attention_mask, |
|
head_mask=head_mask |
|
) |
|
sequence_output = outputs[0] |
|
|
|
sequence_output = self.dropout(sequence_output) |
|
logits = self.classifier(sequence_output) |
|
|
|
outputs = (logits, ) + outputs[2:] |
|
if labels is not None: |
|
loss_fct = CrossEntropyLoss() |
|
|
|
if attention_mask is not None: |
|
active_loss = attention_mask.view(-1) == 1 |
|
active_logits = logits.view(-1, self.num_labels)[active_loss] |
|
active_labels = labels.view(-1)[active_loss] |
|
loss = loss_fct(active_logits, active_labels) |
|
else: |
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) |
|
outputs = (loss, ) + outputs |
|
|
|
return outputs |
|
|
|
|
|
@add_start_docstrings( |
|
"""Bert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of |
|
the hidden-states output to compute `span start logits` and `span end logits`). """, |
|
BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING |
|
) |
|
class BertForQuestionAnswering(BertPreTrainedModel): |
|
r""" |
|
**start_positions**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``: |
|
Labels for position (index) of the start of the labelled span for computing the token classification loss. |
|
Positions are clamped to the length of the sequence (`sequence_length`). |
|
Position outside of the sequence are not taken into account for computing the loss. |
|
**end_positions**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``: |
|
Labels for position (index) of the end of the labelled span for computing the token classification loss. |
|
Positions are clamped to the length of the sequence (`sequence_length`). |
|
Position outside of the sequence are not taken into account for computing the loss. |
|
|
|
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: |
|
**loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: |
|
Total span extraction loss is the sum of a Cross-Entropy for the start and end positions. |
|
**start_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length,)`` |
|
Span-start scores (before SoftMax). |
|
**end_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length,)`` |
|
Span-end scores (before SoftMax). |
|
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) |
|
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) |
|
of shape ``(batch_size, sequence_length, hidden_size)``: |
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs. |
|
**attentions**: (`optional`, returned when ``config.output_attentions=True``) |
|
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: |
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. |
|
|
|
Examples:: |
|
|
|
>>> config = BertConfig.from_pretrained('bert-base-uncased') |
|
>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') |
|
>>> |
|
>>> model = BertForQuestionAnswering(config) |
|
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 |
|
>>> start_positions = torch.tensor([1]) |
|
>>> end_positions = torch.tensor([3]) |
|
>>> outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions) |
|
>>> loss, start_scores, end_scores = outputs[:2] |
|
|
|
""" |
|
def __init__(self, config): |
|
super(BertForQuestionAnswering, self).__init__(config) |
|
self.num_labels = config.num_labels |
|
|
|
self.bert = BertModel(config) |
|
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) |
|
|
|
self.apply(self.init_weights) |
|
|
|
def forward( |
|
self, |
|
input_ids, |
|
token_type_ids=None, |
|
attention_mask=None, |
|
start_positions=None, |
|
end_positions=None, |
|
position_ids=None, |
|
head_mask=None |
|
): |
|
outputs = self.bert( |
|
input_ids, |
|
position_ids=position_ids, |
|
token_type_ids=token_type_ids, |
|
attention_mask=attention_mask, |
|
head_mask=head_mask |
|
) |
|
sequence_output = outputs[0] |
|
|
|
logits = self.qa_outputs(sequence_output) |
|
start_logits, end_logits = logits.split(1, dim=-1) |
|
start_logits = start_logits.squeeze(-1) |
|
end_logits = end_logits.squeeze(-1) |
|
|
|
outputs = ( |
|
start_logits, |
|
end_logits, |
|
) + outputs[2:] |
|
if start_positions is not None and end_positions is not None: |
|
|
|
if len(start_positions.size()) > 1: |
|
start_positions = start_positions.squeeze(-1) |
|
if len(end_positions.size()) > 1: |
|
end_positions = end_positions.squeeze(-1) |
|
|
|
ignored_index = start_logits.size(1) |
|
start_positions.clamp_(0, ignored_index) |
|
end_positions.clamp_(0, ignored_index) |
|
|
|
loss_fct = CrossEntropyLoss(ignore_index=ignored_index) |
|
start_loss = loss_fct(start_logits, start_positions) |
|
end_loss = loss_fct(end_logits, end_positions) |
|
total_loss = (start_loss + end_loss) / 2 |
|
outputs = (total_loss, ) + outputs |
|
|
|
return outputs |
|
|