|
import torch.nn as nn |
|
import torch |
|
import math |
|
import torch.nn.functional as F |
|
|
|
|
|
class single_conv(nn.Module): |
|
def __init__(self, in_ch, out_ch): |
|
super(single_conv, self).__init__() |
|
self.conv = nn.Sequential( |
|
nn.Conv2d(in_ch, out_ch, 3, stride=1, padding=1), |
|
nn.BatchNorm2d(out_ch), |
|
nn.ReLU(inplace=True), |
|
) |
|
|
|
def forward(self, x): |
|
return self.conv(x) |
|
|
|
|
|
class double_conv(nn.Module): |
|
def __init__(self, in_ch, out_ch): |
|
super(double_conv, self).__init__() |
|
self.conv = nn.Sequential( |
|
nn.Conv2d(in_ch, out_ch, 3, stride=1, padding=1), nn.BatchNorm2d(out_ch), |
|
nn.ReLU(inplace=True), nn.Conv2d(out_ch, out_ch, 3, stride=1, padding=1), |
|
nn.BatchNorm2d(out_ch), nn.ReLU(inplace=True) |
|
) |
|
|
|
def forward(self, x): |
|
return self.conv(x) |
|
|
|
|
|
class double_conv_down(nn.Module): |
|
def __init__(self, in_ch, out_ch): |
|
super(double_conv_down, self).__init__() |
|
self.conv = nn.Sequential( |
|
nn.Conv2d(in_ch, out_ch, 3, stride=2, padding=1), nn.BatchNorm2d(out_ch), |
|
nn.ReLU(inplace=True), nn.Conv2d(out_ch, out_ch, 3, stride=1, padding=1), |
|
nn.BatchNorm2d(out_ch), nn.ReLU(inplace=True) |
|
) |
|
|
|
def forward(self, x): |
|
return self.conv(x) |
|
|
|
|
|
class double_conv_up(nn.Module): |
|
def __init__(self, in_ch, out_ch): |
|
super(double_conv_up, self).__init__() |
|
self.conv = nn.Sequential( |
|
nn.UpsamplingNearest2d(scale_factor=2), |
|
nn.Conv2d(in_ch, out_ch, 3, stride=1, padding=1), nn.BatchNorm2d(out_ch), |
|
nn.ReLU(inplace=True), nn.Conv2d(out_ch, out_ch, 3, stride=1, padding=1), |
|
nn.BatchNorm2d(out_ch), nn.ReLU(inplace=True) |
|
) |
|
|
|
def forward(self, x): |
|
return self.conv(x) |
|
|
|
|
|
class PosEnSine(nn.Module): |
|
""" |
|
Code borrowed from DETR: models/positional_encoding.py |
|
output size: b*(2.num_pos_feats)*h*w |
|
""" |
|
def __init__(self, num_pos_feats): |
|
super(PosEnSine, self).__init__() |
|
self.num_pos_feats = num_pos_feats |
|
self.normalize = True |
|
self.scale = 2 * math.pi |
|
self.temperature = 10000 |
|
|
|
def forward(self, x, pt_coord=None): |
|
b, c, h, w = x.shape |
|
if pt_coord is not None: |
|
z_embed = pt_coord[:, :, 2].unsqueeze(-1) + 1. |
|
y_embed = pt_coord[:, :, 1].unsqueeze(-1) + 1. |
|
x_embed = pt_coord[:, :, 0].unsqueeze(-1) + 1. |
|
else: |
|
not_mask = torch.ones(1, h, w, device=x.device) |
|
y_embed = not_mask.cumsum(1, dtype=torch.float32) |
|
x_embed = not_mask.cumsum(2, dtype=torch.float32) |
|
z_embed = torch.ones_like(x_embed) |
|
if self.normalize: |
|
eps = 1e-6 |
|
z_embed = z_embed / (torch.max(z_embed) + eps) * self.scale |
|
y_embed = y_embed / (torch.max(y_embed) + eps) * self.scale |
|
x_embed = x_embed / (torch.max(x_embed) + eps) * self.scale |
|
|
|
dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) |
|
dim_t = self.temperature**(2 * (dim_t // 2) / self.num_pos_feats) |
|
|
|
pos_x = x_embed[:, :, :, None] / dim_t |
|
pos_y = y_embed[:, :, :, None] / dim_t |
|
pos_z = z_embed[:, :, :, None] / dim_t |
|
pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), |
|
dim=4).flatten(3) |
|
pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), |
|
dim=4).flatten(3) |
|
pos_z = torch.stack((pos_z[:, :, :, 0::2].sin(), pos_z[:, :, :, 1::2].cos()), |
|
dim=4).flatten(3) |
|
pos = torch.cat((pos_x, pos_y, pos_z), dim=3).permute(0, 3, 1, 2) |
|
|
|
pos = pos.repeat(b, 1, 1, 1) |
|
return pos |
|
|
|
|
|
def softmax_attention(q, k, v): |
|
|
|
h, w = q.shape[-2], q.shape[-1] |
|
|
|
q = q.flatten(-2).transpose(-2, -1) |
|
k = k.flatten(-2) |
|
v = v.flatten(-2).transpose(-2, -1) |
|
|
|
print('softmax', q.shape, k.shape, v.shape) |
|
|
|
N = k.shape[-1] |
|
attn = torch.matmul(q / N**0.5, k) |
|
attn = F.softmax(attn, dim=-1) |
|
output = torch.matmul(attn, v) |
|
|
|
output = output.transpose(-2, -1) |
|
output = output.view(*output.shape[:-1], h, w) |
|
|
|
return output, attn |
|
|
|
|
|
def dotproduct_attention(q, k, v): |
|
|
|
h, w = q.shape[-2], q.shape[-1] |
|
|
|
q = q.flatten(-2).transpose(-2, -1) |
|
k = k.flatten(-2) |
|
v = v.flatten(-2).transpose(-2, -1) |
|
|
|
N = k.shape[-1] |
|
attn = None |
|
tmp = torch.matmul(k, v) / N |
|
output = torch.matmul(q, tmp) |
|
|
|
output = output.transpose(-2, -1) |
|
output = output.view(*output.shape[:-1], h, w) |
|
|
|
return output, attn |
|
|
|
|
|
def long_range_attention(q, k, v, P_h, P_w): |
|
B, N, C, qH, qW = q.size() |
|
_, _, _, kH, kW = k.size() |
|
|
|
qQ_h, qQ_w = qH // P_h, qW // P_w |
|
kQ_h, kQ_w = kH // P_h, kW // P_w |
|
|
|
q = q.reshape(B, N, C, qQ_h, P_h, qQ_w, P_w) |
|
k = k.reshape(B, N, C, kQ_h, P_h, kQ_w, P_w) |
|
v = v.reshape(B, N, -1, kQ_h, P_h, kQ_w, P_w) |
|
|
|
q = q.permute(0, 1, 4, 6, 2, 3, 5) |
|
k = k.permute(0, 1, 4, 6, 2, 3, 5) |
|
v = v.permute(0, 1, 4, 6, 2, 3, 5) |
|
|
|
output, attn = softmax_attention(q, k, v) |
|
output = output.permute(0, 1, 4, 5, 2, 6, 3) |
|
output = output.reshape(B, N, -1, qH, qW) |
|
return output, attn |
|
|
|
|
|
def short_range_attention(q, k, v, Q_h, Q_w): |
|
B, N, C, qH, qW = q.size() |
|
_, _, _, kH, kW = k.size() |
|
|
|
qP_h, qP_w = qH // Q_h, qW // Q_w |
|
kP_h, kP_w = kH // Q_h, kW // Q_w |
|
|
|
q = q.reshape(B, N, C, Q_h, qP_h, Q_w, qP_w) |
|
k = k.reshape(B, N, C, Q_h, kP_h, Q_w, kP_w) |
|
v = v.reshape(B, N, -1, Q_h, kP_h, Q_w, kP_w) |
|
|
|
q = q.permute(0, 1, 3, 5, 2, 4, 6) |
|
k = k.permute(0, 1, 3, 5, 2, 4, 6) |
|
v = v.permute(0, 1, 3, 5, 2, 4, 6) |
|
|
|
output, attn = softmax_attention(q, k, v) |
|
output = output.permute(0, 1, 4, 2, 5, 3, 6) |
|
output = output.reshape(B, N, -1, qH, qW) |
|
return output, attn |
|
|
|
|
|
def space_to_depth(x, block_size): |
|
x_shape = x.shape |
|
c, h, w = x_shape[-3:] |
|
if len(x.shape) >= 5: |
|
x = x.view(-1, c, h, w) |
|
unfolded_x = torch.nn.functional.unfold(x, block_size, stride=block_size) |
|
return unfolded_x.view(*x_shape[0:-3], c * block_size**2, h // block_size, w // block_size) |
|
|
|
|
|
def depth_to_space(x, block_size): |
|
x_shape = x.shape |
|
c, h, w = x_shape[-3:] |
|
x = x.view(-1, c, h, w) |
|
y = torch.nn.functional.pixel_shuffle(x, block_size) |
|
return y.view(*x_shape[0:-3], -1, h * block_size, w * block_size) |
|
|
|
|
|
def patch_attention(q, k, v, P): |
|
|
|
q_patch = space_to_depth(q, P) |
|
k_patch = space_to_depth(k, P) |
|
v_patch = space_to_depth(v, P) |
|
|
|
|
|
|
|
output, attn = softmax_attention(q_patch, k_patch, v_patch) |
|
output = depth_to_space(output, P) |
|
return output, attn |
|
|