|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
from numpy.testing._private.utils import print_assert_equal |
|
import torch |
|
import numpy as np |
|
import joblib |
|
|
|
from .geometry import batch_euler2matrix |
|
|
|
|
|
def f_pix2vfov(f_pix, img_h): |
|
|
|
if torch.is_tensor(f_pix): |
|
fov = 2. * torch.arctan(img_h / (2. * f_pix)) |
|
else: |
|
fov = 2. * np.arctan(img_h / (2. * f_pix)) |
|
|
|
return fov |
|
|
|
|
|
def vfov2f_pix(fov, img_h): |
|
|
|
if torch.is_tensor(fov): |
|
f_pix = img_h / 2. / torch.tan(fov / 2.) |
|
else: |
|
f_pix = img_h / 2. / np.tan(fov / 2.) |
|
|
|
return f_pix |
|
|
|
|
|
def read_cam_params(cam_params, orig_shape=None): |
|
|
|
|
|
|
|
cam_pitch = cam_params['pitch'].item() |
|
cam_roll = cam_params['roll'].item() if 'roll' in cam_params else None |
|
|
|
cam_vfov = cam_params['vfov'].item() if 'vfov' in cam_params else None |
|
|
|
cam_focal_length = cam_params['f_pix'] |
|
|
|
orig_shape = cam_params['orig_resolution'] |
|
|
|
|
|
cam_rotmat = batch_euler2matrix(torch.tensor([[cam_pitch, 0., 0.]]).float())[0] |
|
|
|
pred_cam_int = torch.zeros(3, 3) |
|
|
|
cx, cy = orig_shape[1] / 2, orig_shape[0] / 2 |
|
|
|
pred_cam_int[0, 0] = cam_focal_length |
|
pred_cam_int[1, 1] = cam_focal_length |
|
|
|
pred_cam_int[:-1, -1] = torch.tensor([cx, cy]) |
|
|
|
cam_int = pred_cam_int.float() |
|
|
|
return cam_rotmat, cam_int, cam_vfov, cam_pitch, cam_roll, cam_focal_length |
|
|
|
|
|
def homo_vector(vector): |
|
""" |
|
vector: B x N x C |
|
h_vector: B x N x (C + 1) |
|
""" |
|
|
|
batch_size, n_pts = vector.shape[:2] |
|
|
|
h_vector = torch.cat([vector, torch.ones((batch_size, n_pts, 1)).to(vector)], dim=-1) |
|
return h_vector |
|
|