|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import cv2 |
|
import numpy as np |
|
|
|
from .glm import ortho |
|
|
|
|
|
class Camera: |
|
|
|
def __init__(self, width=1600, height=1200): |
|
|
|
|
|
focal = np.sqrt(width * width + height * height) |
|
self.focal_x = focal |
|
self.focal_y = focal |
|
|
|
self.principal_x = width / 2 |
|
self.principal_y = height / 2 |
|
|
|
self.skew = 0 |
|
|
|
self.width = width |
|
self.height = height |
|
|
|
self.near = 1 |
|
self.far = 10 |
|
|
|
|
|
self.center = np.array([0, 0, 1.6]) |
|
self.direction = np.array([0, 0, -1]) |
|
self.right = np.array([1, 0, 0]) |
|
self.up = np.array([0, 1, 0]) |
|
|
|
self.ortho_ratio = None |
|
|
|
def sanity_check(self): |
|
self.center = self.center.reshape([-1]) |
|
self.direction = self.direction.reshape([-1]) |
|
self.right = self.right.reshape([-1]) |
|
self.up = self.up.reshape([-1]) |
|
|
|
assert len(self.center) == 3 |
|
assert len(self.direction) == 3 |
|
assert len(self.right) == 3 |
|
assert len(self.up) == 3 |
|
|
|
@staticmethod |
|
def normalize_vector(v): |
|
v_norm = np.linalg.norm(v) |
|
return v if v_norm == 0 else v / v_norm |
|
|
|
def get_real_z_value(self, z): |
|
z_near = self.near |
|
z_far = self.far |
|
z_n = 2.0 * z - 1.0 |
|
z_e = 2.0 * z_near * z_far / (z_far + z_near - z_n * (z_far - z_near)) |
|
return z_e |
|
|
|
def get_rotation_matrix(self): |
|
rot_mat = np.eye(3) |
|
s = self.right |
|
s = self.normalize_vector(s) |
|
rot_mat[0, :] = s |
|
u = self.up |
|
u = self.normalize_vector(u) |
|
rot_mat[1, :] = -u |
|
rot_mat[2, :] = self.normalize_vector(self.direction) |
|
|
|
return rot_mat |
|
|
|
def get_translation_vector(self): |
|
rot_mat = self.get_rotation_matrix() |
|
trans = -np.dot(rot_mat, self.center) |
|
return trans |
|
|
|
def get_intrinsic_matrix(self): |
|
int_mat = np.eye(3) |
|
|
|
int_mat[0, 0] = self.focal_x |
|
int_mat[1, 1] = self.focal_y |
|
int_mat[0, 1] = self.skew |
|
int_mat[0, 2] = self.principal_x |
|
int_mat[1, 2] = self.principal_y |
|
|
|
return int_mat |
|
|
|
def get_projection_matrix(self): |
|
ext_mat = self.get_extrinsic_matrix() |
|
int_mat = self.get_intrinsic_matrix() |
|
|
|
return np.matmul(int_mat, ext_mat) |
|
|
|
def get_extrinsic_matrix(self): |
|
rot_mat = self.get_rotation_matrix() |
|
int_mat = self.get_intrinsic_matrix() |
|
trans = self.get_translation_vector() |
|
|
|
extrinsic = np.eye(4) |
|
extrinsic[:3, :3] = rot_mat |
|
extrinsic[:3, 3] = trans |
|
|
|
return extrinsic[:3, :] |
|
|
|
def set_rotation_matrix(self, rot_mat): |
|
self.direction = rot_mat[2, :] |
|
self.up = -rot_mat[1, :] |
|
self.right = rot_mat[0, :] |
|
|
|
def set_intrinsic_matrix(self, int_mat): |
|
self.focal_x = int_mat[0, 0] |
|
self.focal_y = int_mat[1, 1] |
|
self.skew = int_mat[0, 1] |
|
self.principal_x = int_mat[0, 2] |
|
self.principal_y = int_mat[1, 2] |
|
|
|
def set_projection_matrix(self, proj_mat): |
|
res = cv2.decomposeProjectionMatrix(proj_mat) |
|
int_mat, rot_mat, camera_center_homo = res[0], res[1], res[2] |
|
camera_center = camera_center_homo[0:3] / camera_center_homo[3] |
|
camera_center = camera_center.reshape(-1) |
|
int_mat = int_mat / int_mat[2][2] |
|
|
|
self.set_intrinsic_matrix(int_mat) |
|
self.set_rotation_matrix(rot_mat) |
|
self.center = camera_center |
|
|
|
self.sanity_check() |
|
|
|
def get_gl_matrix(self): |
|
z_near = self.near |
|
z_far = self.far |
|
rot_mat = self.get_rotation_matrix() |
|
int_mat = self.get_intrinsic_matrix() |
|
trans = self.get_translation_vector() |
|
|
|
extrinsic = np.eye(4) |
|
extrinsic[:3, :3] = rot_mat |
|
extrinsic[:3, 3] = trans |
|
axis_adj = np.eye(4) |
|
axis_adj[2, 2] = -1 |
|
axis_adj[1, 1] = -1 |
|
model_view = np.matmul(axis_adj, extrinsic) |
|
|
|
projective = np.zeros([4, 4]) |
|
projective[:2, :2] = int_mat[:2, :2] |
|
projective[:2, 2:3] = -int_mat[:2, 2:3] |
|
projective[3, 2] = -1 |
|
projective[2, 2] = (z_near + z_far) |
|
projective[2, 3] = (z_near * z_far) |
|
|
|
if self.ortho_ratio is None: |
|
ndc = ortho(0, self.width, 0, self.height, z_near, z_far) |
|
perspective = np.matmul(ndc, projective) |
|
else: |
|
perspective = ortho(-self.width * self.ortho_ratio / 2, |
|
self.width * self.ortho_ratio / 2, |
|
-self.height * self.ortho_ratio / 2, |
|
self.height * self.ortho_ratio / 2, z_near, |
|
z_far) |
|
|
|
return perspective, model_view |
|
|
|
|
|
def KRT_from_P(proj_mat, normalize_K=True): |
|
res = cv2.decomposeProjectionMatrix(proj_mat) |
|
K, Rot, camera_center_homog = res[0], res[1], res[2] |
|
camera_center = camera_center_homog[0:3] / camera_center_homog[3] |
|
trans = -Rot.dot(camera_center) |
|
if normalize_K: |
|
K = K / K[2][2] |
|
return K, Rot, trans |
|
|
|
|
|
def MVP_from_P(proj_mat, width, height, near=0.1, far=10000): |
|
''' |
|
Convert OpenCV camera calibration matrix to OpenGL projection and model view matrix |
|
:param proj_mat: OpenCV camera projeciton matrix |
|
:param width: Image width |
|
:param height: Image height |
|
:param near: Z near value |
|
:param far: Z far value |
|
:return: OpenGL projection matrix and model view matrix |
|
''' |
|
res = cv2.decomposeProjectionMatrix(proj_mat) |
|
K, Rot, camera_center_homog = res[0], res[1], res[2] |
|
camera_center = camera_center_homog[0:3] / camera_center_homog[3] |
|
trans = -Rot.dot(camera_center) |
|
K = K / K[2][2] |
|
|
|
extrinsic = np.eye(4) |
|
extrinsic[:3, :3] = Rot |
|
extrinsic[:3, 3:4] = trans |
|
axis_adj = np.eye(4) |
|
axis_adj[2, 2] = -1 |
|
axis_adj[1, 1] = -1 |
|
model_view = np.matmul(axis_adj, extrinsic) |
|
|
|
zFar = far |
|
zNear = near |
|
projective = np.zeros([4, 4]) |
|
projective[:2, :2] = K[:2, :2] |
|
projective[:2, 2:3] = -K[:2, 2:3] |
|
projective[3, 2] = -1 |
|
projective[2, 2] = (zNear + zFar) |
|
projective[2, 3] = (zNear * zFar) |
|
|
|
ndc = ortho(0, width, 0, height, zNear, zFar) |
|
|
|
perspective = np.matmul(ndc, projective) |
|
|
|
return perspective, model_view |
|
|