|
import torch |
|
import torch.nn as nn |
|
import numpy as np |
|
|
|
from lib.pymaf.utils.geometry import rot6d_to_rotmat, projection, rotation_matrix_to_angle_axis |
|
from .maf_extractor import MAF_Extractor |
|
from .smpl import SMPL, SMPL_MODEL_DIR, SMPL_MEAN_PARAMS, H36M_TO_J14 |
|
from .hmr import ResNet_Backbone |
|
from .res_module import IUV_predict_layer |
|
from lib.common.config import cfg |
|
import logging |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
BN_MOMENTUM = 0.1 |
|
|
|
|
|
class Regressor(nn.Module): |
|
|
|
def __init__(self, feat_dim, smpl_mean_params): |
|
super().__init__() |
|
|
|
npose = 24 * 6 |
|
|
|
self.fc1 = nn.Linear(feat_dim + npose + 13, 1024) |
|
self.drop1 = nn.Dropout() |
|
self.fc2 = nn.Linear(1024, 1024) |
|
self.drop2 = nn.Dropout() |
|
self.decpose = nn.Linear(1024, npose) |
|
self.decshape = nn.Linear(1024, 10) |
|
self.deccam = nn.Linear(1024, 3) |
|
nn.init.xavier_uniform_(self.decpose.weight, gain=0.01) |
|
nn.init.xavier_uniform_(self.decshape.weight, gain=0.01) |
|
nn.init.xavier_uniform_(self.deccam.weight, gain=0.01) |
|
|
|
self.smpl = SMPL(SMPL_MODEL_DIR, batch_size=64, create_transl=False) |
|
|
|
mean_params = np.load(smpl_mean_params) |
|
init_pose = torch.from_numpy(mean_params['pose'][:]).unsqueeze(0) |
|
init_shape = torch.from_numpy( |
|
mean_params['shape'][:].astype('float32')).unsqueeze(0) |
|
init_cam = torch.from_numpy(mean_params['cam']).unsqueeze(0) |
|
self.register_buffer('init_pose', init_pose) |
|
self.register_buffer('init_shape', init_shape) |
|
self.register_buffer('init_cam', init_cam) |
|
|
|
def forward(self, |
|
x, |
|
init_pose=None, |
|
init_shape=None, |
|
init_cam=None, |
|
n_iter=1, |
|
J_regressor=None): |
|
batch_size = x.shape[0] |
|
|
|
if init_pose is None: |
|
init_pose = self.init_pose.expand(batch_size, -1) |
|
if init_shape is None: |
|
init_shape = self.init_shape.expand(batch_size, -1) |
|
if init_cam is None: |
|
init_cam = self.init_cam.expand(batch_size, -1) |
|
|
|
pred_pose = init_pose |
|
pred_shape = init_shape |
|
pred_cam = init_cam |
|
for i in range(n_iter): |
|
xc = torch.cat([x, pred_pose, pred_shape, pred_cam], 1) |
|
xc = self.fc1(xc) |
|
xc = self.drop1(xc) |
|
xc = self.fc2(xc) |
|
xc = self.drop2(xc) |
|
pred_pose = self.decpose(xc) + pred_pose |
|
pred_shape = self.decshape(xc) + pred_shape |
|
pred_cam = self.deccam(xc) + pred_cam |
|
|
|
pred_rotmat = rot6d_to_rotmat(pred_pose).view(batch_size, 24, 3, 3) |
|
|
|
pred_output = self.smpl(betas=pred_shape, |
|
body_pose=pred_rotmat[:, 1:], |
|
global_orient=pred_rotmat[:, 0].unsqueeze(1), |
|
pose2rot=False) |
|
|
|
pred_vertices = pred_output.vertices |
|
pred_joints = pred_output.joints |
|
pred_smpl_joints = pred_output.smpl_joints |
|
pred_keypoints_2d = projection(pred_joints, pred_cam) |
|
pose = rotation_matrix_to_angle_axis(pred_rotmat.reshape(-1, 3, |
|
3)).reshape( |
|
-1, 72) |
|
|
|
if J_regressor is not None: |
|
pred_joints = torch.matmul(J_regressor, pred_vertices) |
|
pred_pelvis = pred_joints[:, [0], :].clone() |
|
pred_joints = pred_joints[:, H36M_TO_J14, :] |
|
pred_joints = pred_joints - pred_pelvis |
|
|
|
output = { |
|
'theta': torch.cat([pred_cam, pred_shape, pose], dim=1), |
|
'verts': pred_vertices, |
|
'kp_2d': pred_keypoints_2d, |
|
'kp_3d': pred_joints, |
|
'smpl_kp_3d': pred_smpl_joints, |
|
'rotmat': pred_rotmat, |
|
'pred_cam': pred_cam, |
|
'pred_shape': pred_shape, |
|
'pred_pose': pred_pose, |
|
} |
|
return output |
|
|
|
def forward_init(self, |
|
x, |
|
init_pose=None, |
|
init_shape=None, |
|
init_cam=None, |
|
n_iter=1, |
|
J_regressor=None): |
|
batch_size = x.shape[0] |
|
|
|
if init_pose is None: |
|
init_pose = self.init_pose.expand(batch_size, -1) |
|
if init_shape is None: |
|
init_shape = self.init_shape.expand(batch_size, -1) |
|
if init_cam is None: |
|
init_cam = self.init_cam.expand(batch_size, -1) |
|
|
|
pred_pose = init_pose |
|
pred_shape = init_shape |
|
pred_cam = init_cam |
|
|
|
pred_rotmat = rot6d_to_rotmat(pred_pose.contiguous()).view( |
|
batch_size, 24, 3, 3) |
|
|
|
pred_output = self.smpl(betas=pred_shape, |
|
body_pose=pred_rotmat[:, 1:], |
|
global_orient=pred_rotmat[:, 0].unsqueeze(1), |
|
pose2rot=False) |
|
|
|
pred_vertices = pred_output.vertices |
|
pred_joints = pred_output.joints |
|
pred_smpl_joints = pred_output.smpl_joints |
|
pred_keypoints_2d = projection(pred_joints, pred_cam) |
|
pose = rotation_matrix_to_angle_axis(pred_rotmat.reshape(-1, 3, |
|
3)).reshape( |
|
-1, 72) |
|
|
|
if J_regressor is not None: |
|
pred_joints = torch.matmul(J_regressor, pred_vertices) |
|
pred_pelvis = pred_joints[:, [0], :].clone() |
|
pred_joints = pred_joints[:, H36M_TO_J14, :] |
|
pred_joints = pred_joints - pred_pelvis |
|
|
|
output = { |
|
'theta': torch.cat([pred_cam, pred_shape, pose], dim=1), |
|
'verts': pred_vertices, |
|
'kp_2d': pred_keypoints_2d, |
|
'kp_3d': pred_joints, |
|
'smpl_kp_3d': pred_smpl_joints, |
|
'rotmat': pred_rotmat, |
|
'pred_cam': pred_cam, |
|
'pred_shape': pred_shape, |
|
'pred_pose': pred_pose, |
|
} |
|
return output |
|
|
|
|
|
class PyMAF(nn.Module): |
|
""" PyMAF based Deep Regressor for Human Mesh Recovery |
|
PyMAF: 3D Human Pose and Shape Regression with Pyramidal Mesh Alignment Feedback Loop, in ICCV, 2021 |
|
""" |
|
|
|
def __init__(self, smpl_mean_params=SMPL_MEAN_PARAMS, pretrained=True): |
|
super().__init__() |
|
self.feature_extractor = ResNet_Backbone( |
|
model=cfg.MODEL.PyMAF.BACKBONE, pretrained=pretrained) |
|
|
|
|
|
self.inplanes = self.feature_extractor.inplanes |
|
self.deconv_with_bias = cfg.RES_MODEL.DECONV_WITH_BIAS |
|
self.deconv_layers = self._make_deconv_layer( |
|
cfg.RES_MODEL.NUM_DECONV_LAYERS, |
|
cfg.RES_MODEL.NUM_DECONV_FILTERS, |
|
cfg.RES_MODEL.NUM_DECONV_KERNELS, |
|
) |
|
|
|
self.maf_extractor = nn.ModuleList() |
|
for _ in range(cfg.MODEL.PyMAF.N_ITER): |
|
self.maf_extractor.append(MAF_Extractor()) |
|
ma_feat_len = self.maf_extractor[-1].Dmap.shape[ |
|
0] * cfg.MODEL.PyMAF.MLP_DIM[-1] |
|
|
|
grid_size = 21 |
|
xv, yv = torch.meshgrid([ |
|
torch.linspace(-1, 1, grid_size), |
|
torch.linspace(-1, 1, grid_size) |
|
]) |
|
points_grid = torch.stack([xv.reshape(-1), |
|
yv.reshape(-1)]).unsqueeze(0) |
|
self.register_buffer('points_grid', points_grid) |
|
grid_feat_len = grid_size * grid_size * cfg.MODEL.PyMAF.MLP_DIM[-1] |
|
|
|
self.regressor = nn.ModuleList() |
|
for i in range(cfg.MODEL.PyMAF.N_ITER): |
|
if i == 0: |
|
ref_infeat_dim = grid_feat_len |
|
else: |
|
ref_infeat_dim = ma_feat_len |
|
self.regressor.append( |
|
Regressor(feat_dim=ref_infeat_dim, |
|
smpl_mean_params=smpl_mean_params)) |
|
|
|
dp_feat_dim = 256 |
|
self.with_uv = cfg.LOSS.POINT_REGRESSION_WEIGHTS > 0 |
|
if cfg.MODEL.PyMAF.AUX_SUPV_ON: |
|
self.dp_head = IUV_predict_layer(feat_dim=dp_feat_dim) |
|
|
|
def _make_layer(self, block, planes, blocks, stride=1): |
|
downsample = None |
|
if stride != 1 or self.inplanes != planes * block.expansion: |
|
downsample = nn.Sequential( |
|
nn.Conv2d(self.inplanes, |
|
planes * block.expansion, |
|
kernel_size=1, |
|
stride=stride, |
|
bias=False), |
|
nn.BatchNorm2d(planes * block.expansion), |
|
) |
|
|
|
layers = [] |
|
layers.append(block(self.inplanes, planes, stride, downsample)) |
|
self.inplanes = planes * block.expansion |
|
for i in range(1, blocks): |
|
layers.append(block(self.inplanes, planes)) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def _make_deconv_layer(self, num_layers, num_filters, num_kernels): |
|
""" |
|
Deconv_layer used in Simple Baselines: |
|
Xiao et al. Simple Baselines for Human Pose Estimation and Tracking |
|
https://github.com/microsoft/human-pose-estimation.pytorch |
|
""" |
|
assert num_layers == len(num_filters), \ |
|
'ERROR: num_deconv_layers is different len(num_deconv_filters)' |
|
assert num_layers == len(num_kernels), \ |
|
'ERROR: num_deconv_layers is different len(num_deconv_filters)' |
|
|
|
def _get_deconv_cfg(deconv_kernel, index): |
|
if deconv_kernel == 4: |
|
padding = 1 |
|
output_padding = 0 |
|
elif deconv_kernel == 3: |
|
padding = 1 |
|
output_padding = 1 |
|
elif deconv_kernel == 2: |
|
padding = 0 |
|
output_padding = 0 |
|
|
|
return deconv_kernel, padding, output_padding |
|
|
|
layers = [] |
|
for i in range(num_layers): |
|
kernel, padding, output_padding = _get_deconv_cfg( |
|
num_kernels[i], i) |
|
|
|
planes = num_filters[i] |
|
layers.append( |
|
nn.ConvTranspose2d(in_channels=self.inplanes, |
|
out_channels=planes, |
|
kernel_size=kernel, |
|
stride=2, |
|
padding=padding, |
|
output_padding=output_padding, |
|
bias=self.deconv_with_bias)) |
|
layers.append(nn.BatchNorm2d(planes, momentum=BN_MOMENTUM)) |
|
layers.append(nn.ReLU(inplace=True)) |
|
self.inplanes = planes |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def forward(self, x, J_regressor=None): |
|
|
|
batch_size = x.shape[0] |
|
|
|
|
|
s_feat, g_feat = self.feature_extractor(x) |
|
|
|
assert cfg.MODEL.PyMAF.N_ITER >= 0 and cfg.MODEL.PyMAF.N_ITER <= 3 |
|
if cfg.MODEL.PyMAF.N_ITER == 1: |
|
deconv_blocks = [self.deconv_layers] |
|
elif cfg.MODEL.PyMAF.N_ITER == 2: |
|
deconv_blocks = [self.deconv_layers[0:6], self.deconv_layers[6:9]] |
|
elif cfg.MODEL.PyMAF.N_ITER == 3: |
|
deconv_blocks = [ |
|
self.deconv_layers[0:3], self.deconv_layers[3:6], |
|
self.deconv_layers[6:9] |
|
] |
|
|
|
out_list = {} |
|
|
|
|
|
|
|
|
|
smpl_output = self.regressor[0].forward_init(g_feat, |
|
J_regressor=J_regressor) |
|
|
|
out_list['smpl_out'] = [smpl_output] |
|
out_list['dp_out'] = [] |
|
|
|
|
|
vis_feat_list = [s_feat.detach()] |
|
|
|
|
|
for rf_i in range(cfg.MODEL.PyMAF.N_ITER): |
|
pred_cam = smpl_output['pred_cam'] |
|
pred_shape = smpl_output['pred_shape'] |
|
pred_pose = smpl_output['pred_pose'] |
|
|
|
pred_cam = pred_cam.detach() |
|
pred_shape = pred_shape.detach() |
|
pred_pose = pred_pose.detach() |
|
|
|
s_feat_i = deconv_blocks[rf_i](s_feat) |
|
s_feat = s_feat_i |
|
vis_feat_list.append(s_feat_i.detach()) |
|
|
|
self.maf_extractor[rf_i].im_feat = s_feat_i |
|
self.maf_extractor[rf_i].cam = pred_cam |
|
|
|
if rf_i == 0: |
|
sample_points = torch.transpose( |
|
self.points_grid.expand(batch_size, -1, -1), 1, 2) |
|
ref_feature = self.maf_extractor[rf_i].sampling(sample_points) |
|
else: |
|
pred_smpl_verts = smpl_output['verts'].detach() |
|
|
|
pred_smpl_verts_ds = torch.matmul( |
|
self.maf_extractor[rf_i].Dmap.unsqueeze(0), |
|
pred_smpl_verts) |
|
ref_feature = self.maf_extractor[rf_i]( |
|
pred_smpl_verts_ds) |
|
|
|
smpl_output = self.regressor[rf_i](ref_feature, |
|
pred_pose, |
|
pred_shape, |
|
pred_cam, |
|
n_iter=1, |
|
J_regressor=J_regressor) |
|
out_list['smpl_out'].append(smpl_output) |
|
|
|
if self.training and cfg.MODEL.PyMAF.AUX_SUPV_ON: |
|
iuv_out_dict = self.dp_head(s_feat) |
|
out_list['dp_out'].append(iuv_out_dict) |
|
|
|
return out_list |
|
|
|
|
|
def pymaf_net(smpl_mean_params, pretrained=True): |
|
""" Constructs an PyMAF model with ResNet50 backbone. |
|
Args: |
|
pretrained (bool): If True, returns a model pre-trained on ImageNet |
|
""" |
|
model = PyMAF(smpl_mean_params, pretrained) |
|
return model |
|
|