|
|
|
|
|
import torch |
|
import numpy as np |
|
from lib.smplx import SMPL as _SMPL |
|
from lib.smplx.body_models import ModelOutput |
|
from lib.smplx.lbs import vertices2joints |
|
from collections import namedtuple |
|
|
|
from lib.pymaf.core import path_config, constants |
|
|
|
SMPL_MEAN_PARAMS = path_config.SMPL_MEAN_PARAMS |
|
SMPL_MODEL_DIR = path_config.SMPL_MODEL_DIR |
|
|
|
|
|
H36M_TO_J17 = [6, 5, 4, 1, 2, 3, 16, 15, 14, 11, 12, 13, 8, 10, 0, 7, 9] |
|
H36M_TO_J14 = H36M_TO_J17[:14] |
|
|
|
|
|
class SMPL(_SMPL): |
|
""" Extension of the official SMPL implementation to support more joints """ |
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
joints = [constants.JOINT_MAP[i] for i in constants.JOINT_NAMES] |
|
J_regressor_extra = np.load(path_config.JOINT_REGRESSOR_TRAIN_EXTRA) |
|
self.register_buffer( |
|
'J_regressor_extra', |
|
torch.tensor(J_regressor_extra, dtype=torch.float32)) |
|
self.joint_map = torch.tensor(joints, dtype=torch.long) |
|
self.ModelOutput = namedtuple( |
|
'ModelOutput_', ModelOutput._fields + ( |
|
'smpl_joints', |
|
'joints_J19', |
|
)) |
|
self.ModelOutput.__new__.__defaults__ = (None, ) * len( |
|
self.ModelOutput._fields) |
|
|
|
def forward(self, *args, **kwargs): |
|
kwargs['get_skin'] = True |
|
smpl_output = super().forward(*args, **kwargs) |
|
extra_joints = vertices2joints(self.J_regressor_extra, |
|
smpl_output.vertices) |
|
|
|
vertices = smpl_output.vertices |
|
joints = torch.cat([smpl_output.joints, extra_joints], dim=1) |
|
smpl_joints = smpl_output.joints[:, :24] |
|
joints = joints[:, self.joint_map, :] |
|
joints_J24 = joints[:, -24:, :] |
|
joints_J19 = joints_J24[:, constants.J24_TO_J19, :] |
|
output = self.ModelOutput(vertices=vertices, |
|
global_orient=smpl_output.global_orient, |
|
body_pose=smpl_output.body_pose, |
|
joints=joints, |
|
joints_J19=joints_J19, |
|
smpl_joints=smpl_joints, |
|
betas=smpl_output.betas, |
|
full_pose=smpl_output.full_pose) |
|
return output |
|
|
|
|
|
def get_smpl_faces(): |
|
smpl = SMPL(SMPL_MODEL_DIR, batch_size=1, create_transl=False) |
|
return smpl.faces |
|
|
|
|
|
def get_part_joints(smpl_joints): |
|
batch_size = smpl_joints.shape[0] |
|
|
|
|
|
|
|
one_seg_pairs = [(0, 1), (0, 2), (0, 3), (3, 6), (9, 12), (9, 13), (9, 14), |
|
(12, 15), (13, 16), (14, 17)] |
|
two_seg_pairs = [(1, 4), (2, 5), (4, 7), (5, 8), (16, 18), (17, 19), |
|
(18, 20), (19, 21)] |
|
|
|
one_seg_pairs.extend(two_seg_pairs) |
|
|
|
single_joints = [(10), (11), (15), (22), (23)] |
|
|
|
part_joints = [] |
|
|
|
for j_p in one_seg_pairs: |
|
new_joint = torch.mean(smpl_joints[:, j_p], dim=1, keepdim=True) |
|
part_joints.append(new_joint) |
|
|
|
for j_p in single_joints: |
|
part_joints.append(smpl_joints[:, j_p:j_p + 1]) |
|
|
|
part_joints = torch.cat(part_joints, dim=1) |
|
|
|
return part_joints |
|
|