|
import torch |
|
import numpy as np |
|
from torch.nn import functional as F |
|
""" |
|
Useful geometric operations, e.g. Perspective projection and a differentiable Rodrigues formula |
|
Parts of the code are taken from https://github.com/MandyMo/pytorch_HMR |
|
""" |
|
|
|
|
|
def batch_rodrigues(theta): |
|
"""Convert axis-angle representation to rotation matrix. |
|
Args: |
|
theta: size = [B, 3] |
|
Returns: |
|
Rotation matrix corresponding to the quaternion -- size = [B, 3, 3] |
|
""" |
|
l1norm = torch.norm(theta + 1e-8, p=2, dim=1) |
|
angle = torch.unsqueeze(l1norm, -1) |
|
normalized = torch.div(theta, angle) |
|
angle = angle * 0.5 |
|
v_cos = torch.cos(angle) |
|
v_sin = torch.sin(angle) |
|
quat = torch.cat([v_cos, v_sin * normalized], dim=1) |
|
return quat_to_rotmat(quat) |
|
|
|
|
|
def quat_to_rotmat(quat): |
|
"""Convert quaternion coefficients to rotation matrix. |
|
Args: |
|
quat: size = [B, 4] 4 <===>(w, x, y, z) |
|
Returns: |
|
Rotation matrix corresponding to the quaternion -- size = [B, 3, 3] |
|
""" |
|
norm_quat = quat |
|
norm_quat = norm_quat / norm_quat.norm(p=2, dim=1, keepdim=True) |
|
w, x, y, z = norm_quat[:, 0], norm_quat[:, 1], norm_quat[:, |
|
2], norm_quat[:, |
|
3] |
|
|
|
B = quat.size(0) |
|
|
|
w2, x2, y2, z2 = w.pow(2), x.pow(2), y.pow(2), z.pow(2) |
|
wx, wy, wz = w * x, w * y, w * z |
|
xy, xz, yz = x * y, x * z, y * z |
|
|
|
rotMat = torch.stack([ |
|
w2 + x2 - y2 - z2, 2 * xy - 2 * wz, 2 * wy + 2 * xz, 2 * wz + 2 * xy, |
|
w2 - x2 + y2 - z2, 2 * yz - 2 * wx, 2 * xz - 2 * wy, 2 * wx + 2 * yz, |
|
w2 - x2 - y2 + z2 |
|
], |
|
dim=1).view(B, 3, 3) |
|
return rotMat |
|
|
|
|
|
def rotation_matrix_to_angle_axis(rotation_matrix): |
|
""" |
|
This function is borrowed from https://github.com/kornia/kornia |
|
|
|
Convert 3x4 rotation matrix to Rodrigues vector |
|
|
|
Args: |
|
rotation_matrix (Tensor): rotation matrix. |
|
|
|
Returns: |
|
Tensor: Rodrigues vector transformation. |
|
|
|
Shape: |
|
- Input: :math:`(N, 3, 4)` |
|
- Output: :math:`(N, 3)` |
|
|
|
Example: |
|
>>> input = torch.rand(2, 3, 4) # Nx4x4 |
|
>>> output = tgm.rotation_matrix_to_angle_axis(input) # Nx3 |
|
""" |
|
if rotation_matrix.shape[1:] == (3, 3): |
|
rot_mat = rotation_matrix.reshape(-1, 3, 3) |
|
hom = torch.tensor([0, 0, 1], |
|
dtype=torch.float32, |
|
device=rotation_matrix.device).reshape( |
|
1, 3, 1).expand(rot_mat.shape[0], -1, -1) |
|
rotation_matrix = torch.cat([rot_mat, hom], dim=-1) |
|
|
|
quaternion = rotation_matrix_to_quaternion(rotation_matrix) |
|
aa = quaternion_to_angle_axis(quaternion) |
|
aa[torch.isnan(aa)] = 0.0 |
|
return aa |
|
|
|
|
|
def quaternion_to_angle_axis(quaternion: torch.Tensor) -> torch.Tensor: |
|
""" |
|
This function is borrowed from https://github.com/kornia/kornia |
|
|
|
Convert quaternion vector to angle axis of rotation. |
|
|
|
Adapted from ceres C++ library: ceres-solver/include/ceres/rotation.h |
|
|
|
Args: |
|
quaternion (torch.Tensor): tensor with quaternions. |
|
|
|
Return: |
|
torch.Tensor: tensor with angle axis of rotation. |
|
|
|
Shape: |
|
- Input: :math:`(*, 4)` where `*` means, any number of dimensions |
|
- Output: :math:`(*, 3)` |
|
|
|
Example: |
|
>>> quaternion = torch.rand(2, 4) # Nx4 |
|
>>> angle_axis = tgm.quaternion_to_angle_axis(quaternion) # Nx3 |
|
""" |
|
if not torch.is_tensor(quaternion): |
|
raise TypeError("Input type is not a torch.Tensor. Got {}".format( |
|
type(quaternion))) |
|
|
|
if not quaternion.shape[-1] == 4: |
|
raise ValueError( |
|
"Input must be a tensor of shape Nx4 or 4. Got {}".format( |
|
quaternion.shape)) |
|
|
|
q1: torch.Tensor = quaternion[..., 1] |
|
q2: torch.Tensor = quaternion[..., 2] |
|
q3: torch.Tensor = quaternion[..., 3] |
|
sin_squared_theta: torch.Tensor = q1 * q1 + q2 * q2 + q3 * q3 |
|
|
|
sin_theta: torch.Tensor = torch.sqrt(sin_squared_theta) |
|
cos_theta: torch.Tensor = quaternion[..., 0] |
|
two_theta: torch.Tensor = 2.0 * torch.where( |
|
cos_theta < 0.0, torch.atan2(-sin_theta, -cos_theta), |
|
torch.atan2(sin_theta, cos_theta)) |
|
|
|
k_pos: torch.Tensor = two_theta / sin_theta |
|
k_neg: torch.Tensor = 2.0 * torch.ones_like(sin_theta) |
|
k: torch.Tensor = torch.where(sin_squared_theta > 0.0, k_pos, k_neg) |
|
|
|
angle_axis: torch.Tensor = torch.zeros_like(quaternion)[..., :3] |
|
angle_axis[..., 0] += q1 * k |
|
angle_axis[..., 1] += q2 * k |
|
angle_axis[..., 2] += q3 * k |
|
return angle_axis |
|
|
|
|
|
def rotation_matrix_to_quaternion(rotation_matrix, eps=1e-6): |
|
""" |
|
This function is borrowed from https://github.com/kornia/kornia |
|
|
|
Convert 3x4 rotation matrix to 4d quaternion vector |
|
|
|
This algorithm is based on algorithm described in |
|
https://github.com/KieranWynn/pyquaternion/blob/master/pyquaternion/quaternion.py#L201 |
|
|
|
Args: |
|
rotation_matrix (Tensor): the rotation matrix to convert. |
|
|
|
Return: |
|
Tensor: the rotation in quaternion |
|
|
|
Shape: |
|
- Input: :math:`(N, 3, 4)` |
|
- Output: :math:`(N, 4)` |
|
|
|
Example: |
|
>>> input = torch.rand(4, 3, 4) # Nx3x4 |
|
>>> output = tgm.rotation_matrix_to_quaternion(input) # Nx4 |
|
""" |
|
if not torch.is_tensor(rotation_matrix): |
|
raise TypeError("Input type is not a torch.Tensor. Got {}".format( |
|
type(rotation_matrix))) |
|
|
|
if len(rotation_matrix.shape) > 3: |
|
raise ValueError( |
|
"Input size must be a three dimensional tensor. Got {}".format( |
|
rotation_matrix.shape)) |
|
if not rotation_matrix.shape[-2:] == (3, 4): |
|
raise ValueError( |
|
"Input size must be a N x 3 x 4 tensor. Got {}".format( |
|
rotation_matrix.shape)) |
|
|
|
rmat_t = torch.transpose(rotation_matrix, 1, 2) |
|
|
|
mask_d2 = rmat_t[:, 2, 2] < eps |
|
|
|
mask_d0_d1 = rmat_t[:, 0, 0] > rmat_t[:, 1, 1] |
|
mask_d0_nd1 = rmat_t[:, 0, 0] < -rmat_t[:, 1, 1] |
|
|
|
t0 = 1 + rmat_t[:, 0, 0] - rmat_t[:, 1, 1] - rmat_t[:, 2, 2] |
|
q0 = torch.stack([ |
|
rmat_t[:, 1, 2] - rmat_t[:, 2, 1], t0, |
|
rmat_t[:, 0, 1] + rmat_t[:, 1, 0], rmat_t[:, 2, 0] + rmat_t[:, 0, 2] |
|
], -1) |
|
t0_rep = t0.repeat(4, 1).t() |
|
|
|
t1 = 1 - rmat_t[:, 0, 0] + rmat_t[:, 1, 1] - rmat_t[:, 2, 2] |
|
q1 = torch.stack([ |
|
rmat_t[:, 2, 0] - rmat_t[:, 0, 2], rmat_t[:, 0, 1] + rmat_t[:, 1, 0], |
|
t1, rmat_t[:, 1, 2] + rmat_t[:, 2, 1] |
|
], -1) |
|
t1_rep = t1.repeat(4, 1).t() |
|
|
|
t2 = 1 - rmat_t[:, 0, 0] - rmat_t[:, 1, 1] + rmat_t[:, 2, 2] |
|
q2 = torch.stack([ |
|
rmat_t[:, 0, 1] - rmat_t[:, 1, 0], rmat_t[:, 2, 0] + rmat_t[:, 0, 2], |
|
rmat_t[:, 1, 2] + rmat_t[:, 2, 1], t2 |
|
], -1) |
|
t2_rep = t2.repeat(4, 1).t() |
|
|
|
t3 = 1 + rmat_t[:, 0, 0] + rmat_t[:, 1, 1] + rmat_t[:, 2, 2] |
|
q3 = torch.stack([ |
|
t3, rmat_t[:, 1, 2] - rmat_t[:, 2, 1], |
|
rmat_t[:, 2, 0] - rmat_t[:, 0, 2], rmat_t[:, 0, 1] - rmat_t[:, 1, 0] |
|
], -1) |
|
t3_rep = t3.repeat(4, 1).t() |
|
|
|
mask_c0 = mask_d2 * mask_d0_d1 |
|
mask_c1 = mask_d2 * ~mask_d0_d1 |
|
mask_c2 = ~mask_d2 * mask_d0_nd1 |
|
mask_c3 = ~mask_d2 * ~mask_d0_nd1 |
|
mask_c0 = mask_c0.view(-1, 1).type_as(q0) |
|
mask_c1 = mask_c1.view(-1, 1).type_as(q1) |
|
mask_c2 = mask_c2.view(-1, 1).type_as(q2) |
|
mask_c3 = mask_c3.view(-1, 1).type_as(q3) |
|
|
|
q = q0 * mask_c0 + q1 * mask_c1 + q2 * mask_c2 + q3 * mask_c3 |
|
q /= torch.sqrt(t0_rep * mask_c0 + t1_rep * mask_c1 + |
|
t2_rep * mask_c2 + t3_rep * mask_c3) |
|
q *= 0.5 |
|
return q |
|
|
|
|
|
def rot6d_to_rotmat(x): |
|
"""Convert 6D rotation representation to 3x3 rotation matrix. |
|
Based on Zhou et al., "On the Continuity of Rotation Representations in Neural Networks", CVPR 2019 |
|
Input: |
|
(B,6) Batch of 6-D rotation representations |
|
Output: |
|
(B,3,3) Batch of corresponding rotation matrices |
|
""" |
|
x = x.view(-1, 3, 2) |
|
a1 = x[:, :, 0] |
|
a2 = x[:, :, 1] |
|
b1 = F.normalize(a1) |
|
b2 = F.normalize(a2 - torch.einsum('bi,bi->b', b1, a2).unsqueeze(-1) * b1) |
|
b3 = torch.cross(b1, b2) |
|
return torch.stack((b1, b2, b3), dim=-1) |
|
|
|
|
|
def projection(pred_joints, pred_camera, retain_z=False): |
|
pred_cam_t = torch.stack([ |
|
pred_camera[:, 1], pred_camera[:, 2], 2 * 5000. / |
|
(224. * pred_camera[:, 0] + 1e-9) |
|
], |
|
dim=-1) |
|
batch_size = pred_joints.shape[0] |
|
camera_center = torch.zeros(batch_size, 2) |
|
pred_keypoints_2d = perspective_projection( |
|
pred_joints, |
|
rotation=torch.eye(3).unsqueeze(0).expand(batch_size, -1, |
|
-1).to(pred_joints.device), |
|
translation=pred_cam_t, |
|
focal_length=5000., |
|
camera_center=camera_center, |
|
retain_z=retain_z) |
|
|
|
pred_keypoints_2d = pred_keypoints_2d / (224. / 2.) |
|
return pred_keypoints_2d |
|
|
|
|
|
def perspective_projection(points, |
|
rotation, |
|
translation, |
|
focal_length, |
|
camera_center, |
|
retain_z=False): |
|
""" |
|
This function computes the perspective projection of a set of points. |
|
Input: |
|
points (bs, N, 3): 3D points |
|
rotation (bs, 3, 3): Camera rotation |
|
translation (bs, 3): Camera translation |
|
focal_length (bs,) or scalar: Focal length |
|
camera_center (bs, 2): Camera center |
|
""" |
|
batch_size = points.shape[0] |
|
K = torch.zeros([batch_size, 3, 3], device=points.device) |
|
K[:, 0, 0] = focal_length |
|
K[:, 1, 1] = focal_length |
|
K[:, 2, 2] = 1. |
|
K[:, :-1, -1] = camera_center |
|
|
|
|
|
points = torch.einsum('bij,bkj->bki', rotation, points) |
|
points = points + translation.unsqueeze(1) |
|
|
|
|
|
projected_points = points / points[:, :, -1].unsqueeze(-1) |
|
|
|
|
|
projected_points = torch.einsum('bij,bkj->bki', K, projected_points) |
|
|
|
if retain_z: |
|
return projected_points |
|
else: |
|
return projected_points[:, :, :-1] |
|
|
|
|
|
def estimate_translation_np(S, |
|
joints_2d, |
|
joints_conf, |
|
focal_length=5000, |
|
img_size=224): |
|
"""Find camera translation that brings 3D joints S closest to 2D the corresponding joints_2d. |
|
Input: |
|
S: (25, 3) 3D joint locations |
|
joints: (25, 3) 2D joint locations and confidence |
|
Returns: |
|
(3,) camera translation vector |
|
""" |
|
|
|
num_joints = S.shape[0] |
|
|
|
f = np.array([focal_length, focal_length]) |
|
|
|
center = np.array([img_size / 2., img_size / 2.]) |
|
|
|
|
|
Z = np.reshape(np.tile(S[:, 2], (2, 1)).T, -1) |
|
XY = np.reshape(S[:, 0:2], -1) |
|
O = np.tile(center, num_joints) |
|
F = np.tile(f, num_joints) |
|
weight2 = np.reshape(np.tile(np.sqrt(joints_conf), (2, 1)).T, -1) |
|
|
|
|
|
Q = np.array([ |
|
F * np.tile(np.array([1, 0]), num_joints), |
|
F * np.tile(np.array([0, 1]), num_joints), |
|
O - np.reshape(joints_2d, -1) |
|
]).T |
|
c = (np.reshape(joints_2d, -1) - O) * Z - F * XY |
|
|
|
|
|
W = np.diagflat(weight2) |
|
Q = np.dot(W, Q) |
|
c = np.dot(W, c) |
|
|
|
|
|
A = np.dot(Q.T, Q) |
|
b = np.dot(Q.T, c) |
|
|
|
|
|
trans = np.linalg.solve(A, b) |
|
|
|
return trans |
|
|
|
|
|
def estimate_translation(S, joints_2d, focal_length=5000., img_size=224.): |
|
"""Find camera translation that brings 3D joints S closest to 2D the corresponding joints_2d. |
|
Input: |
|
S: (B, 49, 3) 3D joint locations |
|
joints: (B, 49, 3) 2D joint locations and confidence |
|
Returns: |
|
(B, 3) camera translation vectors |
|
""" |
|
|
|
device = S.device |
|
|
|
S = S[:, 25:, :].cpu().numpy() |
|
joints_2d = joints_2d[:, 25:, :].cpu().numpy() |
|
joints_conf = joints_2d[:, :, -1] |
|
joints_2d = joints_2d[:, :, :-1] |
|
trans = np.zeros((S.shape[0], 3), dtype=np.float32) |
|
|
|
for i in range(S.shape[0]): |
|
S_i = S[i] |
|
joints_i = joints_2d[i] |
|
conf_i = joints_conf[i] |
|
trans[i] = estimate_translation_np(S_i, |
|
joints_i, |
|
conf_i, |
|
focal_length=focal_length, |
|
img_size=img_size) |
|
return torch.from_numpy(trans).to(device) |
|
|
|
|
|
def Rot_y(angle, category='torch', prepend_dim=True, device=None): |
|
'''Rotate around y-axis by angle |
|
Args: |
|
category: 'torch' or 'numpy' |
|
prepend_dim: prepend an extra dimension |
|
Return: Rotation matrix with shape [1, 3, 3] (prepend_dim=True) |
|
''' |
|
m = np.array([[np.cos(angle), 0., np.sin(angle)], [0., 1., 0.], |
|
[-np.sin(angle), 0., np.cos(angle)]]) |
|
if category == 'torch': |
|
if prepend_dim: |
|
return torch.tensor(m, dtype=torch.float, |
|
device=device).unsqueeze(0) |
|
else: |
|
return torch.tensor(m, dtype=torch.float, device=device) |
|
elif category == 'numpy': |
|
if prepend_dim: |
|
return np.expand_dims(m, 0) |
|
else: |
|
return m |
|
else: |
|
raise ValueError("category must be 'torch' or 'numpy'") |
|
|
|
|
|
def Rot_x(angle, category='torch', prepend_dim=True, device=None): |
|
'''Rotate around x-axis by angle |
|
Args: |
|
category: 'torch' or 'numpy' |
|
prepend_dim: prepend an extra dimension |
|
Return: Rotation matrix with shape [1, 3, 3] (prepend_dim=True) |
|
''' |
|
m = np.array([[1., 0., 0.], [0., np.cos(angle), -np.sin(angle)], |
|
[0., np.sin(angle), np.cos(angle)]]) |
|
if category == 'torch': |
|
if prepend_dim: |
|
return torch.tensor(m, dtype=torch.float, |
|
device=device).unsqueeze(0) |
|
else: |
|
return torch.tensor(m, dtype=torch.float, device=device) |
|
elif category == 'numpy': |
|
if prepend_dim: |
|
return np.expand_dims(m, 0) |
|
else: |
|
return m |
|
else: |
|
raise ValueError("category must be 'torch' or 'numpy'") |
|
|
|
|
|
def Rot_z(angle, category='torch', prepend_dim=True, device=None): |
|
'''Rotate around z-axis by angle |
|
Args: |
|
category: 'torch' or 'numpy' |
|
prepend_dim: prepend an extra dimension |
|
Return: Rotation matrix with shape [1, 3, 3] (prepend_dim=True) |
|
''' |
|
m = np.array([[np.cos(angle), -np.sin(angle), 0.], |
|
[np.sin(angle), np.cos(angle), 0.], [0., 0., 1.]]) |
|
if category == 'torch': |
|
if prepend_dim: |
|
return torch.tensor(m, dtype=torch.float, |
|
device=device).unsqueeze(0) |
|
else: |
|
return torch.tensor(m, dtype=torch.float, device=device) |
|
elif category == 'numpy': |
|
if prepend_dim: |
|
return np.expand_dims(m, 0) |
|
else: |
|
return m |
|
else: |
|
raise ValueError("category must be 'torch' or 'numpy'") |
|
|