|
import cv2 |
|
import torch |
|
import numpy as np |
|
import imageio |
|
|
|
|
|
def aug_matrix(w1, h1, w2, h2): |
|
dx = (w2 - w1) / 2.0 |
|
dy = (h2 - h1) / 2.0 |
|
|
|
matrix_trans = np.array([[1.0, 0, dx], [0, 1.0, dy], [0, 0, 1.0]]) |
|
|
|
scale = np.min([float(w2) / w1, float(h2) / h1]) |
|
|
|
M = get_affine_matrix(center=(w2 / 2.0, h2 / 2.0), |
|
translate=(0, 0), |
|
scale=scale) |
|
|
|
M = np.array(M + [0., 0., 1.]).reshape(3, 3) |
|
M = M.dot(matrix_trans) |
|
|
|
return M |
|
|
|
|
|
def get_affine_matrix(center, translate, scale): |
|
cx, cy = center |
|
tx, ty = translate |
|
|
|
M = [1, 0, 0, 0, 1, 0] |
|
M = [x * scale for x in M] |
|
|
|
|
|
M[2] += M[0] * (-cx) + M[1] * (-cy) |
|
M[5] += M[3] * (-cx) + M[4] * (-cy) |
|
|
|
|
|
M[2] += cx + tx |
|
M[5] += cy + ty |
|
return M |
|
|
|
|
|
class BaseStreamer(): |
|
"""This streamer will return images at 512x512 size. |
|
""" |
|
|
|
def __init__(self, |
|
width=512, |
|
height=512, |
|
pad=True, |
|
mean=(0.5, 0.5, 0.5), |
|
std=(0.5, 0.5, 0.5), |
|
**kwargs): |
|
self.width = width |
|
self.height = height |
|
self.pad = pad |
|
self.mean = np.array(mean) |
|
self.std = np.array(std) |
|
|
|
self.loader = self.create_loader() |
|
|
|
def create_loader(self): |
|
raise NotImplementedError |
|
yield np.zeros((600, 400, 3)) |
|
|
|
def __getitem__(self, index): |
|
image = next(self.loader) |
|
in_height, in_width, _ = image.shape |
|
M = aug_matrix(in_width, in_height, self.width, self.height, self.pad) |
|
image = cv2.warpAffine(image, |
|
M[0:2, :], (self.width, self.height), |
|
flags=cv2.INTER_CUBIC) |
|
|
|
input = np.float32(image) |
|
input = (input / 255.0 - self.mean) / self.std |
|
input = input.transpose(2, 0, 1) |
|
return torch.from_numpy(input).float() |
|
|
|
def __len__(self): |
|
raise NotImplementedError |
|
|
|
|
|
class CaptureStreamer(BaseStreamer): |
|
"""This streamer takes webcam as input. |
|
""" |
|
|
|
def __init__(self, id=0, width=512, height=512, pad=True, **kwargs): |
|
super().__init__(width, height, pad, **kwargs) |
|
self.capture = cv2.VideoCapture(id) |
|
|
|
def create_loader(self): |
|
while True: |
|
_, image = self.capture.read() |
|
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) |
|
yield image |
|
|
|
def __len__(self): |
|
return 100_000_000 |
|
|
|
def __del__(self): |
|
self.capture.release() |
|
|
|
|
|
class VideoListStreamer(BaseStreamer): |
|
"""This streamer takes a list of video files as input. |
|
""" |
|
|
|
def __init__(self, files, width=512, height=512, pad=True, **kwargs): |
|
super().__init__(width, height, pad, **kwargs) |
|
self.files = files |
|
self.captures = [imageio.get_reader(f) for f in files] |
|
self.nframes = sum([ |
|
int(cap._meta["fps"] * cap._meta["duration"]) |
|
for cap in self.captures |
|
]) |
|
|
|
def create_loader(self): |
|
for capture in self.captures: |
|
for image in capture: |
|
yield image |
|
|
|
def __len__(self): |
|
return self.nframes |
|
|
|
def __del__(self): |
|
for capture in self.captures: |
|
capture.close() |
|
|
|
|
|
class ImageListStreamer(BaseStreamer): |
|
"""This streamer takes a list of image files as input. |
|
""" |
|
|
|
def __init__(self, files, width=512, height=512, pad=True, **kwargs): |
|
super().__init__(width, height, pad, **kwargs) |
|
self.files = files |
|
|
|
def create_loader(self): |
|
for f in self.files: |
|
image = cv2.imread(f, cv2.IMREAD_UNCHANGED)[:, :, 0:3] |
|
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) |
|
yield image |
|
|
|
def __len__(self): |
|
return len(self.files) |
|
|