|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from lib.net.net_util import * |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
|
|
class HourGlass(nn.Module): |
|
|
|
def __init__(self, num_modules, depth, num_features, opt): |
|
super(HourGlass, self).__init__() |
|
self.num_modules = num_modules |
|
self.depth = depth |
|
self.features = num_features |
|
self.opt = opt |
|
|
|
self._generate_network(self.depth) |
|
|
|
def _generate_network(self, level): |
|
self.add_module('b1_' + str(level), |
|
ConvBlock(self.features, self.features, self.opt)) |
|
|
|
self.add_module('b2_' + str(level), |
|
ConvBlock(self.features, self.features, self.opt)) |
|
|
|
if level > 1: |
|
self._generate_network(level - 1) |
|
else: |
|
self.add_module('b2_plus_' + str(level), |
|
ConvBlock(self.features, self.features, self.opt)) |
|
|
|
self.add_module('b3_' + str(level), |
|
ConvBlock(self.features, self.features, self.opt)) |
|
|
|
def _forward(self, level, inp): |
|
|
|
up1 = inp |
|
up1 = self._modules['b1_' + str(level)](up1) |
|
|
|
|
|
low1 = F.avg_pool2d(inp, 2, stride=2) |
|
low1 = self._modules['b2_' + str(level)](low1) |
|
|
|
if level > 1: |
|
low2 = self._forward(level - 1, low1) |
|
else: |
|
low2 = low1 |
|
low2 = self._modules['b2_plus_' + str(level)](low2) |
|
|
|
low3 = low2 |
|
low3 = self._modules['b3_' + str(level)](low3) |
|
|
|
|
|
|
|
|
|
up2 = F.interpolate(low3, |
|
scale_factor=2, |
|
mode='bicubic', |
|
align_corners=True) |
|
|
|
|
|
return up1 + up2 |
|
|
|
def forward(self, x): |
|
return self._forward(self.depth, x) |
|
|
|
|
|
class HGFilter(nn.Module): |
|
|
|
def __init__(self, opt, num_modules, in_dim): |
|
super(HGFilter, self).__init__() |
|
self.num_modules = num_modules |
|
|
|
self.opt = opt |
|
[k, s, d, p] = self.opt.conv1 |
|
|
|
|
|
self.conv1 = nn.Conv2d(in_dim, |
|
64, |
|
kernel_size=k, |
|
stride=s, |
|
dilation=d, |
|
padding=p) |
|
|
|
if self.opt.norm == 'batch': |
|
self.bn1 = nn.BatchNorm2d(64) |
|
elif self.opt.norm == 'group': |
|
self.bn1 = nn.GroupNorm(32, 64) |
|
|
|
if self.opt.hg_down == 'conv64': |
|
self.conv2 = ConvBlock(64, 64, self.opt) |
|
self.down_conv2 = nn.Conv2d(64, |
|
128, |
|
kernel_size=3, |
|
stride=2, |
|
padding=1) |
|
elif self.opt.hg_down == 'conv128': |
|
self.conv2 = ConvBlock(64, 128, self.opt) |
|
self.down_conv2 = nn.Conv2d(128, |
|
128, |
|
kernel_size=3, |
|
stride=2, |
|
padding=1) |
|
elif self.opt.hg_down == 'ave_pool': |
|
self.conv2 = ConvBlock(64, 128, self.opt) |
|
else: |
|
raise NameError('Unknown Fan Filter setting!') |
|
|
|
self.conv3 = ConvBlock(128, 128, self.opt) |
|
self.conv4 = ConvBlock(128, 256, self.opt) |
|
|
|
|
|
for hg_module in range(self.num_modules): |
|
self.add_module('m' + str(hg_module), |
|
HourGlass(1, opt.num_hourglass, 256, self.opt)) |
|
|
|
self.add_module('top_m_' + str(hg_module), |
|
ConvBlock(256, 256, self.opt)) |
|
self.add_module( |
|
'conv_last' + str(hg_module), |
|
nn.Conv2d(256, 256, kernel_size=1, stride=1, padding=0)) |
|
if self.opt.norm == 'batch': |
|
self.add_module('bn_end' + str(hg_module), nn.BatchNorm2d(256)) |
|
elif self.opt.norm == 'group': |
|
self.add_module('bn_end' + str(hg_module), |
|
nn.GroupNorm(32, 256)) |
|
|
|
self.add_module( |
|
'l' + str(hg_module), |
|
nn.Conv2d(256, |
|
opt.hourglass_dim, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0)) |
|
|
|
if hg_module < self.num_modules - 1: |
|
self.add_module( |
|
'bl' + str(hg_module), |
|
nn.Conv2d(256, 256, kernel_size=1, stride=1, padding=0)) |
|
self.add_module( |
|
'al' + str(hg_module), |
|
nn.Conv2d(opt.hourglass_dim, |
|
256, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0)) |
|
|
|
def forward(self, x): |
|
x = F.relu(self.bn1(self.conv1(x)), True) |
|
tmpx = x |
|
if self.opt.hg_down == 'ave_pool': |
|
x = F.avg_pool2d(self.conv2(x), 2, stride=2) |
|
elif self.opt.hg_down in ['conv64', 'conv128']: |
|
x = self.conv2(x) |
|
x = self.down_conv2(x) |
|
else: |
|
raise NameError('Unknown Fan Filter setting!') |
|
|
|
x = self.conv3(x) |
|
x = self.conv4(x) |
|
|
|
previous = x |
|
|
|
outputs = [] |
|
for i in range(self.num_modules): |
|
hg = self._modules['m' + str(i)](previous) |
|
|
|
ll = hg |
|
ll = self._modules['top_m_' + str(i)](ll) |
|
|
|
ll = F.relu( |
|
self._modules['bn_end' + str(i)]( |
|
self._modules['conv_last' + str(i)](ll)), True) |
|
|
|
|
|
tmp_out = self._modules['l' + str(i)](ll) |
|
outputs.append(tmp_out) |
|
|
|
if i < self.num_modules - 1: |
|
ll = self._modules['bl' + str(i)](ll) |
|
tmp_out_ = self._modules['al' + str(i)](tmp_out) |
|
previous = previous + ll + tmp_out_ |
|
|
|
return outputs |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class FuseHGFilter(nn.Module): |
|
|
|
def __init__(self, opt, num_modules, in_dim): |
|
super(FuseHGFilter, self).__init__() |
|
self.num_modules = num_modules |
|
|
|
self.opt = opt |
|
[k, s, d, p] = self.opt.conv1 |
|
|
|
|
|
self.conv1 = nn.Conv2d(in_dim, |
|
64, |
|
kernel_size=k, |
|
stride=s, |
|
dilation=d, |
|
padding=p) |
|
|
|
if self.opt.norm == 'batch': |
|
self.bn1 = nn.BatchNorm2d(64) |
|
elif self.opt.norm == 'group': |
|
self.bn1 = nn.GroupNorm(32, 64) |
|
|
|
|
|
self.conv2 = ConvBlock(64, 128, self.opt) |
|
self.down_conv2 = nn.Conv2d(128, |
|
96, |
|
kernel_size=3, |
|
stride=2, |
|
padding=1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dim=96+32 |
|
self.conv3 = ConvBlock(dim, dim, self.opt) |
|
self.conv4 = ConvBlock(dim, 256, self.opt) |
|
|
|
|
|
for hg_module in range(self.num_modules): |
|
self.add_module('m' + str(hg_module), |
|
HourGlass(1, opt.num_hourglass, 256, self.opt)) |
|
|
|
self.add_module('top_m_' + str(hg_module), |
|
ConvBlock(256, 256, self.opt)) |
|
self.add_module( |
|
'conv_last' + str(hg_module), |
|
nn.Conv2d(256, 256, kernel_size=1, stride=1, padding=0)) |
|
if self.opt.norm == 'batch': |
|
self.add_module('bn_end' + str(hg_module), nn.BatchNorm2d(256)) |
|
elif self.opt.norm == 'group': |
|
self.add_module('bn_end' + str(hg_module), |
|
nn.GroupNorm(32, 256)) |
|
|
|
hourglass_dim=256 |
|
self.add_module( |
|
'l' + str(hg_module), |
|
nn.Conv2d(256, |
|
hourglass_dim, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0)) |
|
|
|
if hg_module < self.num_modules - 1: |
|
self.add_module( |
|
'bl' + str(hg_module), |
|
nn.Conv2d(256, 256, kernel_size=1, stride=1, padding=0)) |
|
self.add_module( |
|
'al' + str(hg_module), |
|
nn.Conv2d(hourglass_dim, |
|
256, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0)) |
|
|
|
self.up_conv=nn.ConvTranspose2d(hourglass_dim,64,kernel_size=2,stride=2) |
|
|
|
def forward(self, x,plane): |
|
x = F.relu(self.bn1(self.conv1(x)), True) |
|
tmpx = x |
|
|
|
x = self.conv2(x) |
|
x = self.down_conv2(x) |
|
|
|
x=torch.cat([x,plane],1) |
|
|
|
|
|
x = self.conv3(x) |
|
x = self.conv4(x) |
|
|
|
previous = x |
|
|
|
outputs = [] |
|
for i in range(self.num_modules): |
|
hg = self._modules['m' + str(i)](previous) |
|
|
|
ll = hg |
|
ll = self._modules['top_m_' + str(i)](ll) |
|
|
|
ll = F.relu( |
|
self._modules['bn_end' + str(i)]( |
|
self._modules['conv_last' + str(i)](ll)), True) |
|
|
|
|
|
tmp_out = self._modules['l' + str(i)](ll) |
|
outputs.append(tmp_out) |
|
|
|
if i < self.num_modules - 1: |
|
ll = self._modules['bl' + str(i)](ll) |
|
tmp_out_ = self._modules['al' + str(i)](tmp_out) |
|
previous = previous + ll + tmp_out_ |
|
|
|
out=self.up_conv(outputs[-1]) |
|
|
|
return out |