|
''' |
|
borrowed from https://github.com/vchoutas/expose/blob/master/expose/models/backbone/hrnet.py |
|
''' |
|
|
|
import os.path as osp |
|
import torch |
|
import torch.nn as nn |
|
|
|
from torchvision.models.resnet import Bottleneck, BasicBlock |
|
|
|
BN_MOMENTUM = 0.1 |
|
|
|
|
|
def load_HRNet(pretrained=False): |
|
hr_net_cfg_dict = { |
|
'use_old_impl': False, |
|
'pretrained_layers': ['*'], |
|
'stage1': { |
|
'num_modules': 1, |
|
'num_branches': 1, |
|
'num_blocks': [4], |
|
'num_channels': [64], |
|
'block': 'BOTTLENECK', |
|
'fuse_method': 'SUM' |
|
}, |
|
'stage2': { |
|
'num_modules': 1, |
|
'num_branches': 2, |
|
'num_blocks': [4, 4], |
|
'num_channels': [48, 96], |
|
'block': 'BASIC', |
|
'fuse_method': 'SUM' |
|
}, |
|
'stage3': { |
|
'num_modules': 4, |
|
'num_branches': 3, |
|
'num_blocks': [4, 4, 4], |
|
'num_channels': [48, 96, 192], |
|
'block': 'BASIC', |
|
'fuse_method': 'SUM' |
|
}, |
|
'stage4': { |
|
'num_modules': 3, |
|
'num_branches': 4, |
|
'num_blocks': [4, 4, 4, 4], |
|
'num_channels': [48, 96, 192, 384], |
|
'block': 'BASIC', |
|
'fuse_method': 'SUM' |
|
} |
|
} |
|
hr_net_cfg = hr_net_cfg_dict |
|
model = HighResolutionNet(hr_net_cfg) |
|
|
|
return model |
|
|
|
|
|
class HighResolutionModule(nn.Module): |
|
|
|
def __init__(self, |
|
num_branches, |
|
blocks, |
|
num_blocks, |
|
num_inchannels, |
|
num_channels, |
|
fuse_method, |
|
multi_scale_output=True): |
|
super(HighResolutionModule, self).__init__() |
|
self._check_branches(num_branches, blocks, num_blocks, num_inchannels, |
|
num_channels) |
|
|
|
self.num_inchannels = num_inchannels |
|
self.fuse_method = fuse_method |
|
self.num_branches = num_branches |
|
|
|
self.multi_scale_output = multi_scale_output |
|
|
|
self.branches = self._make_branches(num_branches, blocks, num_blocks, |
|
num_channels) |
|
self.fuse_layers = self._make_fuse_layers() |
|
self.relu = nn.ReLU(True) |
|
|
|
def _check_branches(self, num_branches, blocks, num_blocks, num_inchannels, |
|
num_channels): |
|
if num_branches != len(num_blocks): |
|
error_msg = 'NUM_BRANCHES({}) <> NUM_BLOCKS({})'.format( |
|
num_branches, len(num_blocks)) |
|
raise ValueError(error_msg) |
|
|
|
if num_branches != len(num_channels): |
|
error_msg = 'NUM_BRANCHES({}) <> NUM_CHANNELS({})'.format( |
|
num_branches, len(num_channels)) |
|
raise ValueError(error_msg) |
|
|
|
if num_branches != len(num_inchannels): |
|
error_msg = 'NUM_BRANCHES({}) <> NUM_INCHANNELS({})'.format( |
|
num_branches, len(num_inchannels)) |
|
raise ValueError(error_msg) |
|
|
|
def _make_one_branch(self, |
|
branch_index, |
|
block, |
|
num_blocks, |
|
num_channels, |
|
stride=1): |
|
downsample = None |
|
if stride != 1 or \ |
|
self.num_inchannels[branch_index] != num_channels[branch_index] * block.expansion: |
|
downsample = nn.Sequential( |
|
nn.Conv2d(self.num_inchannels[branch_index], |
|
num_channels[branch_index] * block.expansion, |
|
kernel_size=1, |
|
stride=stride, |
|
bias=False), |
|
nn.BatchNorm2d(num_channels[branch_index] * block.expansion, |
|
momentum=BN_MOMENTUM), |
|
) |
|
|
|
layers = [] |
|
layers.append( |
|
block(self.num_inchannels[branch_index], |
|
num_channels[branch_index], stride, downsample)) |
|
self.num_inchannels[branch_index] = \ |
|
num_channels[branch_index] * block.expansion |
|
for i in range(1, num_blocks[branch_index]): |
|
layers.append( |
|
block(self.num_inchannels[branch_index], |
|
num_channels[branch_index])) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def _make_branches(self, num_branches, block, num_blocks, num_channels): |
|
branches = [] |
|
|
|
for i in range(num_branches): |
|
branches.append( |
|
self._make_one_branch(i, block, num_blocks, num_channels)) |
|
|
|
return nn.ModuleList(branches) |
|
|
|
def _make_fuse_layers(self): |
|
if self.num_branches == 1: |
|
return None |
|
|
|
num_branches = self.num_branches |
|
num_inchannels = self.num_inchannels |
|
fuse_layers = [] |
|
for i in range(num_branches if self.multi_scale_output else 1): |
|
fuse_layer = [] |
|
for j in range(num_branches): |
|
if j > i: |
|
fuse_layer.append( |
|
nn.Sequential( |
|
nn.Conv2d(num_inchannels[j], |
|
num_inchannels[i], |
|
1, |
|
1, |
|
0, |
|
bias=False), |
|
nn.BatchNorm2d(num_inchannels[i]), |
|
nn.Upsample(scale_factor=2**(j - i), |
|
mode='nearest'))) |
|
elif j == i: |
|
fuse_layer.append(None) |
|
else: |
|
conv3x3s = [] |
|
for k in range(i - j): |
|
if k == i - j - 1: |
|
num_outchannels_conv3x3 = num_inchannels[i] |
|
conv3x3s.append( |
|
nn.Sequential( |
|
nn.Conv2d(num_inchannels[j], |
|
num_outchannels_conv3x3, |
|
3, |
|
2, |
|
1, |
|
bias=False), |
|
nn.BatchNorm2d(num_outchannels_conv3x3))) |
|
else: |
|
num_outchannels_conv3x3 = num_inchannels[j] |
|
conv3x3s.append( |
|
nn.Sequential( |
|
nn.Conv2d(num_inchannels[j], |
|
num_outchannels_conv3x3, |
|
3, |
|
2, |
|
1, |
|
bias=False), |
|
nn.BatchNorm2d(num_outchannels_conv3x3), |
|
nn.ReLU(True))) |
|
fuse_layer.append(nn.Sequential(*conv3x3s)) |
|
fuse_layers.append(nn.ModuleList(fuse_layer)) |
|
|
|
return nn.ModuleList(fuse_layers) |
|
|
|
def get_num_inchannels(self): |
|
return self.num_inchannels |
|
|
|
def forward(self, x): |
|
if self.num_branches == 1: |
|
return [self.branches[0](x[0])] |
|
|
|
for i in range(self.num_branches): |
|
x[i] = self.branches[i](x[i]) |
|
|
|
x_fuse = [] |
|
|
|
for i in range(len(self.fuse_layers)): |
|
y = x[0] if i == 0 else self.fuse_layers[i][0](x[0]) |
|
for j in range(1, self.num_branches): |
|
if i == j: |
|
y = y + x[j] |
|
else: |
|
y = y + self.fuse_layers[i][j](x[j]) |
|
x_fuse.append(self.relu(y)) |
|
|
|
return x_fuse |
|
|
|
|
|
blocks_dict = {'BASIC': BasicBlock, 'BOTTLENECK': Bottleneck} |
|
|
|
|
|
class HighResolutionNet(nn.Module): |
|
|
|
def __init__(self, cfg, **kwargs): |
|
self.inplanes = 64 |
|
super(HighResolutionNet, self).__init__() |
|
use_old_impl = cfg.get('use_old_impl') |
|
self.use_old_impl = use_old_impl |
|
|
|
|
|
self.conv1 = nn.Conv2d(3, |
|
64, |
|
kernel_size=3, |
|
stride=2, |
|
padding=1, |
|
bias=False) |
|
self.bn1 = nn.BatchNorm2d(64, momentum=BN_MOMENTUM) |
|
self.conv2 = nn.Conv2d(64, |
|
64, |
|
kernel_size=3, |
|
stride=2, |
|
padding=1, |
|
bias=False) |
|
self.bn2 = nn.BatchNorm2d(64, momentum=BN_MOMENTUM) |
|
self.relu = nn.ReLU(inplace=True) |
|
|
|
self.stage1_cfg = cfg.get('stage1', {}) |
|
num_channels = self.stage1_cfg['num_channels'][0] |
|
block = blocks_dict[self.stage1_cfg['block']] |
|
num_blocks = self.stage1_cfg['num_blocks'][0] |
|
self.layer1 = self._make_layer(block, num_channels, num_blocks) |
|
stage1_out_channel = block.expansion * num_channels |
|
|
|
self.stage2_cfg = cfg.get('stage2', {}) |
|
num_channels = self.stage2_cfg.get('num_channels', (32, 64)) |
|
block = blocks_dict[self.stage2_cfg.get('block')] |
|
num_channels = [ |
|
num_channels[i] * block.expansion for i in range(len(num_channels)) |
|
] |
|
stage2_num_channels = num_channels |
|
self.transition1 = self._make_transition_layer([stage1_out_channel], |
|
num_channels) |
|
self.stage2, pre_stage_channels = self._make_stage( |
|
self.stage2_cfg, num_channels) |
|
|
|
self.stage3_cfg = cfg.get('stage3') |
|
num_channels = self.stage3_cfg['num_channels'] |
|
block = blocks_dict[self.stage3_cfg['block']] |
|
num_channels = [ |
|
num_channels[i] * block.expansion for i in range(len(num_channels)) |
|
] |
|
stage3_num_channels = num_channels |
|
self.transition2 = self._make_transition_layer(pre_stage_channels, |
|
num_channels) |
|
self.stage3, pre_stage_channels = self._make_stage( |
|
self.stage3_cfg, num_channels) |
|
|
|
self.stage4_cfg = cfg.get('stage4') |
|
num_channels = self.stage4_cfg['num_channels'] |
|
block = blocks_dict[self.stage4_cfg['block']] |
|
num_channels = [ |
|
num_channels[i] * block.expansion for i in range(len(num_channels)) |
|
] |
|
self.transition3 = self._make_transition_layer(pre_stage_channels, |
|
num_channels) |
|
stage_4_out_channels = num_channels |
|
|
|
self.stage4, pre_stage_channels = self._make_stage( |
|
self.stage4_cfg, |
|
num_channels, |
|
multi_scale_output=not self.use_old_impl) |
|
stage4_num_channels = num_channels |
|
|
|
self.output_channels_dim = pre_stage_channels |
|
|
|
self.pretrained_layers = cfg['pretrained_layers'] |
|
self.init_weights() |
|
|
|
self.avg_pooling = nn.AdaptiveAvgPool2d(1) |
|
|
|
if use_old_impl: |
|
in_dims = (2**2 * stage2_num_channels[-1] + |
|
2**1 * stage3_num_channels[-1] + |
|
stage_4_out_channels[-1]) |
|
else: |
|
|
|
in_dims = 4 * 384 |
|
self.subsample_4 = self._make_subsample_layer( |
|
in_channels=stage4_num_channels[0], num_layers=3) |
|
|
|
self.subsample_3 = self._make_subsample_layer( |
|
in_channels=stage2_num_channels[-1], num_layers=2) |
|
self.subsample_2 = self._make_subsample_layer( |
|
in_channels=stage3_num_channels[-1], num_layers=1) |
|
self.conv_layers = self._make_conv_layer(in_channels=in_dims, |
|
num_layers=5) |
|
|
|
def get_output_dim(self): |
|
base_output = { |
|
f'layer{idx + 1}': val |
|
for idx, val in enumerate(self.output_channels_dim) |
|
} |
|
output = base_output.copy() |
|
for key in base_output: |
|
output[f'{key}_avg_pooling'] = output[key] |
|
output['concat'] = 2048 |
|
return output |
|
|
|
def _make_transition_layer(self, num_channels_pre_layer, |
|
num_channels_cur_layer): |
|
num_branches_cur = len(num_channels_cur_layer) |
|
num_branches_pre = len(num_channels_pre_layer) |
|
|
|
transition_layers = [] |
|
for i in range(num_branches_cur): |
|
if i < num_branches_pre: |
|
if num_channels_cur_layer[i] != num_channels_pre_layer[i]: |
|
transition_layers.append( |
|
nn.Sequential( |
|
nn.Conv2d(num_channels_pre_layer[i], |
|
num_channels_cur_layer[i], |
|
3, |
|
1, |
|
1, |
|
bias=False), |
|
nn.BatchNorm2d(num_channels_cur_layer[i]), |
|
nn.ReLU(inplace=True))) |
|
else: |
|
transition_layers.append(None) |
|
else: |
|
conv3x3s = [] |
|
for j in range(i + 1 - num_branches_pre): |
|
inchannels = num_channels_pre_layer[-1] |
|
outchannels = num_channels_cur_layer[i] \ |
|
if j == i - num_branches_pre else inchannels |
|
conv3x3s.append( |
|
nn.Sequential( |
|
nn.Conv2d(inchannels, |
|
outchannels, |
|
3, |
|
2, |
|
1, |
|
bias=False), nn.BatchNorm2d(outchannels), |
|
nn.ReLU(inplace=True))) |
|
transition_layers.append(nn.Sequential(*conv3x3s)) |
|
|
|
return nn.ModuleList(transition_layers) |
|
|
|
def _make_layer(self, block, planes, blocks, stride=1): |
|
downsample = None |
|
if stride != 1 or self.inplanes != planes * block.expansion: |
|
downsample = nn.Sequential( |
|
nn.Conv2d(self.inplanes, |
|
planes * block.expansion, |
|
kernel_size=1, |
|
stride=stride, |
|
bias=False), |
|
nn.BatchNorm2d(planes * block.expansion, momentum=BN_MOMENTUM), |
|
) |
|
|
|
layers = [] |
|
layers.append(block(self.inplanes, planes, stride, downsample)) |
|
self.inplanes = planes * block.expansion |
|
for i in range(1, blocks): |
|
layers.append(block(self.inplanes, planes)) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def _make_conv_layer(self, |
|
in_channels=2048, |
|
num_layers=3, |
|
num_filters=2048, |
|
stride=1): |
|
|
|
layers = [] |
|
for i in range(num_layers): |
|
|
|
downsample = nn.Conv2d(in_channels, |
|
num_filters, |
|
stride=1, |
|
kernel_size=1, |
|
bias=False) |
|
layers.append( |
|
Bottleneck(in_channels, |
|
num_filters // 4, |
|
downsample=downsample)) |
|
in_channels = num_filters |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def _make_subsample_layer(self, in_channels=96, num_layers=3, stride=2): |
|
|
|
layers = [] |
|
for i in range(num_layers): |
|
|
|
layers.append( |
|
nn.Conv2d(in_channels=in_channels, |
|
out_channels=2 * in_channels, |
|
kernel_size=3, |
|
stride=stride, |
|
padding=1)) |
|
in_channels = 2 * in_channels |
|
layers.append(nn.BatchNorm2d(in_channels, momentum=BN_MOMENTUM)) |
|
layers.append(nn.ReLU(inplace=True)) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def _make_stage(self, |
|
layer_config, |
|
num_inchannels, |
|
multi_scale_output=True, |
|
log=False): |
|
num_modules = layer_config['num_modules'] |
|
num_branches = layer_config['num_branches'] |
|
num_blocks = layer_config['num_blocks'] |
|
num_channels = layer_config['num_channels'] |
|
block = blocks_dict[layer_config['block']] |
|
fuse_method = layer_config['fuse_method'] |
|
|
|
modules = [] |
|
for i in range(num_modules): |
|
|
|
if not multi_scale_output and i == num_modules - 1: |
|
reset_multi_scale_output = False |
|
else: |
|
reset_multi_scale_output = True |
|
|
|
modules.append( |
|
HighResolutionModule(num_branches, block, num_blocks, |
|
num_inchannels, num_channels, fuse_method, |
|
reset_multi_scale_output)) |
|
modules[-1].log = log |
|
num_inchannels = modules[-1].get_num_inchannels() |
|
|
|
return nn.Sequential(*modules), num_inchannels |
|
|
|
def forward(self, x): |
|
x = self.conv1(x) |
|
x = self.bn1(x) |
|
x = self.relu(x) |
|
x = self.conv2(x) |
|
x = self.bn2(x) |
|
x = self.relu(x) |
|
x = self.layer1(x) |
|
|
|
x_list = [] |
|
for i in range(self.stage2_cfg['num_branches']): |
|
if self.transition1[i] is not None: |
|
x_list.append(self.transition1[i](x)) |
|
else: |
|
x_list.append(x) |
|
y_list = self.stage2(x_list) |
|
|
|
x_list = [] |
|
for i in range(self.stage3_cfg['num_branches']): |
|
if self.transition2[i] is not None: |
|
if i < self.stage2_cfg['num_branches']: |
|
x_list.append(self.transition2[i](y_list[i])) |
|
else: |
|
x_list.append(self.transition2[i](y_list[-1])) |
|
else: |
|
x_list.append(y_list[i]) |
|
y_list = self.stage3(x_list) |
|
|
|
x_list = [] |
|
for i in range(self.stage4_cfg['num_branches']): |
|
if self.transition3[i] is not None: |
|
if i < self.stage3_cfg['num_branches']: |
|
x_list.append(self.transition3[i](y_list[i])) |
|
else: |
|
x_list.append(self.transition3[i](y_list[-1])) |
|
else: |
|
x_list.append(y_list[i]) |
|
if not self.use_old_impl: |
|
y_list = self.stage4(x_list) |
|
|
|
output = {} |
|
for idx, x in enumerate(y_list): |
|
output[f'layer{idx + 1}'] = x |
|
|
|
feat_list = [] |
|
if self.use_old_impl: |
|
x3 = self.subsample_3(x_list[1]) |
|
x2 = self.subsample_2(x_list[2]) |
|
x1 = x_list[3] |
|
feat_list = [x3, x2, x1] |
|
else: |
|
x4 = self.subsample_4(y_list[0]) |
|
x3 = self.subsample_3(y_list[1]) |
|
x2 = self.subsample_2(y_list[2]) |
|
x1 = y_list[3] |
|
feat_list = [x4, x3, x2, x1] |
|
|
|
xf = self.conv_layers(torch.cat(feat_list, dim=1)) |
|
xf = xf.mean(dim=(2, 3)) |
|
xf = xf.view(xf.size(0), -1) |
|
output['concat'] = xf |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return output |
|
|
|
def init_weights(self): |
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
|
|
nn.init.normal_(m.weight, std=0.001) |
|
for name, _ in m.named_parameters(): |
|
if name in ['bias']: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.BatchNorm2d): |
|
nn.init.constant_(m.weight, 1) |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.ConvTranspose2d): |
|
nn.init.normal_(m.weight, std=0.001) |
|
for name, _ in m.named_parameters(): |
|
if name in ['bias']: |
|
nn.init.constant_(m.bias, 0) |
|
|
|
def load_weights(self, pretrained=''): |
|
pretrained = osp.expandvars(pretrained) |
|
if osp.isfile(pretrained): |
|
pretrained_state_dict = torch.load( |
|
pretrained, map_location=torch.device("cpu")) |
|
|
|
need_init_state_dict = {} |
|
for name, m in pretrained_state_dict.items(): |
|
if (name.split('.')[0] in self.pretrained_layers |
|
or self.pretrained_layers[0] == '*'): |
|
need_init_state_dict[name] = m |
|
missing, unexpected = self.load_state_dict(need_init_state_dict, |
|
strict=False) |
|
elif pretrained: |
|
raise ValueError('{} is not exist!'.format(pretrained)) |
|
|