|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
import math |
|
from collections import OrderedDict |
|
import os |
|
from scipy.ndimage import morphology |
|
import PIL.Image as pil_img |
|
from skimage.io import imsave |
|
import cv2 |
|
import pickle |
|
|
|
|
|
|
|
|
|
def generate_triangles(h, w, mask=None): |
|
''' |
|
quad layout: |
|
0 1 ... w-1 |
|
w w+1 |
|
. |
|
w*h |
|
''' |
|
triangles = [] |
|
margin = 0 |
|
for x in range(margin, w - 1 - margin): |
|
for y in range(margin, h - 1 - margin): |
|
triangle0 = [y * w + x, y * w + x + 1, (y + 1) * w + x] |
|
triangle1 = [y * w + x + 1, (y + 1) * w + x + 1, (y + 1) * w + x] |
|
triangles.append(triangle0) |
|
triangles.append(triangle1) |
|
triangles = np.array(triangles) |
|
triangles = triangles[:, [0, 2, 1]] |
|
return triangles |
|
|
|
|
|
def face_vertices(vertices, faces): |
|
""" |
|
borrowed from https://github.com/daniilidis-group/neural_renderer/blob/master/neural_renderer/vertices_to_faces.py |
|
:param vertices: [batch size, number of vertices, 3] |
|
:param faces: [batch size, number of faces, 3] |
|
:return: [batch size, number of faces, 3, 3] |
|
""" |
|
assert (vertices.ndimension() == 3) |
|
assert (faces.ndimension() == 3) |
|
assert (vertices.shape[0] == faces.shape[0]) |
|
assert (vertices.shape[2] == 3) |
|
assert (faces.shape[2] == 3) |
|
|
|
bs, nv = vertices.shape[:2] |
|
bs, nf = faces.shape[:2] |
|
device = vertices.device |
|
faces = faces + \ |
|
(torch.arange(bs, dtype=torch.int32).to(device) * nv)[:, None, None] |
|
vertices = vertices.reshape((bs * nv, 3)) |
|
|
|
return vertices[faces.long()] |
|
|
|
|
|
def vertex_normals(vertices, faces): |
|
""" |
|
borrowed from https://github.com/daniilidis-group/neural_renderer/blob/master/neural_renderer/vertices_to_faces.py |
|
:param vertices: [batch size, number of vertices, 3] |
|
:param faces: [batch size, number of faces, 3] |
|
:return: [batch size, number of vertices, 3] |
|
""" |
|
assert (vertices.ndimension() == 3) |
|
assert (faces.ndimension() == 3) |
|
assert (vertices.shape[0] == faces.shape[0]) |
|
assert (vertices.shape[2] == 3) |
|
assert (faces.shape[2] == 3) |
|
bs, nv = vertices.shape[:2] |
|
bs, nf = faces.shape[:2] |
|
device = vertices.device |
|
normals = torch.zeros(bs * nv, 3).to(device) |
|
|
|
faces = faces + (torch.arange(bs, dtype=torch.int32).to(device) * |
|
nv)[:, None, None] |
|
vertices_faces = vertices.reshape((bs * nv, 3))[faces.long()] |
|
|
|
faces = faces.reshape(-1, 3) |
|
vertices_faces = vertices_faces.reshape(-1, 3, 3) |
|
|
|
normals.index_add_( |
|
0, faces[:, 1].long(), |
|
torch.cross(vertices_faces[:, 2] - vertices_faces[:, 1], |
|
vertices_faces[:, 0] - vertices_faces[:, 1])) |
|
normals.index_add_( |
|
0, faces[:, 2].long(), |
|
torch.cross(vertices_faces[:, 0] - vertices_faces[:, 2], |
|
vertices_faces[:, 1] - vertices_faces[:, 2])) |
|
normals.index_add_( |
|
0, faces[:, 0].long(), |
|
torch.cross(vertices_faces[:, 1] - vertices_faces[:, 0], |
|
vertices_faces[:, 2] - vertices_faces[:, 0])) |
|
|
|
normals = F.normalize(normals, eps=1e-6, dim=1) |
|
normals = normals.reshape((bs, nv, 3)) |
|
|
|
return normals |
|
|
|
|
|
def batch_orth_proj(X, camera): |
|
''' |
|
X is N x num_verts x 3 |
|
''' |
|
camera = camera.clone().view(-1, 1, 3) |
|
X_trans = X[:, :, :2] + camera[:, :, 1:] |
|
X_trans = torch.cat([X_trans, X[:, :, 2:]], 2) |
|
Xn = (camera[:, :, 0:1] * X_trans) |
|
return Xn |
|
|
|
|
|
|
|
DIM_FLIP = np.array([1, -1, -1], dtype=np.float32) |
|
DIM_FLIP_TENSOR = torch.tensor([1, -1, -1], dtype=torch.float32) |
|
|
|
|
|
def flip_pose(pose_vector, pose_format='rot-mat'): |
|
if pose_format == 'aa': |
|
if torch.is_tensor(pose_vector): |
|
dim_flip = DIM_FLIP_TENSOR |
|
else: |
|
dim_flip = DIM_FLIP |
|
return (pose_vector.reshape(-1, 3) * dim_flip).reshape(-1) |
|
elif pose_format == 'rot-mat': |
|
rot_mats = pose_vector.reshape(-1, 9).clone() |
|
|
|
rot_mats[:, [1, 2, 3, 6]] *= -1 |
|
return rot_mats.view_as(pose_vector) |
|
else: |
|
raise ValueError(f'Unknown rotation format: {pose_format}') |
|
|
|
|
|
|
|
|
|
def gaussian(window_size, sigma): |
|
|
|
def gauss_fcn(x): |
|
return -(x - window_size // 2)**2 / float(2 * sigma**2) |
|
|
|
gauss = torch.stack( |
|
[torch.exp(torch.tensor(gauss_fcn(x))) for x in range(window_size)]) |
|
return gauss / gauss.sum() |
|
|
|
|
|
def get_gaussian_kernel(kernel_size: int, sigma: float): |
|
r"""Function that returns Gaussian filter coefficients. |
|
|
|
Args: |
|
kernel_size (int): filter size. It should be odd and positive. |
|
sigma (float): gaussian standard deviation. |
|
|
|
Returns: |
|
Tensor: 1D tensor with gaussian filter coefficients. |
|
|
|
Shape: |
|
- Output: :math:`(\text{kernel_size})` |
|
|
|
Examples:: |
|
|
|
>>> kornia.image.get_gaussian_kernel(3, 2.5) |
|
tensor([0.3243, 0.3513, 0.3243]) |
|
|
|
>>> kornia.image.get_gaussian_kernel(5, 1.5) |
|
tensor([0.1201, 0.2339, 0.2921, 0.2339, 0.1201]) |
|
""" |
|
if not isinstance(kernel_size, int) or kernel_size % 2 == 0 or \ |
|
kernel_size <= 0: |
|
raise TypeError("kernel_size must be an odd positive integer. " |
|
"Got {}".format(kernel_size)) |
|
window_1d = gaussian(kernel_size, sigma) |
|
return window_1d |
|
|
|
|
|
def get_gaussian_kernel2d(kernel_size, sigma): |
|
r"""Function that returns Gaussian filter matrix coefficients. |
|
|
|
Args: |
|
kernel_size (Tuple[int, int]): filter sizes in the x and y direction. |
|
Sizes should be odd and positive. |
|
sigma (Tuple[int, int]): gaussian standard deviation in the x and y |
|
direction. |
|
|
|
Returns: |
|
Tensor: 2D tensor with gaussian filter matrix coefficients. |
|
|
|
Shape: |
|
- Output: :math:`(\text{kernel_size}_x, \text{kernel_size}_y)` |
|
|
|
Examples:: |
|
|
|
>>> kornia.image.get_gaussian_kernel2d((3, 3), (1.5, 1.5)) |
|
tensor([[0.0947, 0.1183, 0.0947], |
|
[0.1183, 0.1478, 0.1183], |
|
[0.0947, 0.1183, 0.0947]]) |
|
|
|
>>> kornia.image.get_gaussian_kernel2d((3, 5), (1.5, 1.5)) |
|
tensor([[0.0370, 0.0720, 0.0899, 0.0720, 0.0370], |
|
[0.0462, 0.0899, 0.1123, 0.0899, 0.0462], |
|
[0.0370, 0.0720, 0.0899, 0.0720, 0.0370]]) |
|
""" |
|
if not isinstance(kernel_size, tuple) or len(kernel_size) != 2: |
|
raise TypeError( |
|
"kernel_size must be a tuple of length two. Got {}".format( |
|
kernel_size)) |
|
if not isinstance(sigma, tuple) or len(sigma) != 2: |
|
raise TypeError( |
|
"sigma must be a tuple of length two. Got {}".format(sigma)) |
|
ksize_x, ksize_y = kernel_size |
|
sigma_x, sigma_y = sigma |
|
kernel_x = get_gaussian_kernel(ksize_x, sigma_x) |
|
kernel_y = get_gaussian_kernel(ksize_y, sigma_y) |
|
kernel_2d = torch.matmul(kernel_x.unsqueeze(-1), |
|
kernel_y.unsqueeze(-1).t()) |
|
return kernel_2d |
|
|
|
|
|
def gaussian_blur(x, kernel_size=(5, 5), sigma=(1.3, 1.3)): |
|
b, c, h, w = x.shape |
|
kernel = get_gaussian_kernel2d(kernel_size, sigma).to(x.device).to(x.dtype) |
|
kernel = kernel.repeat(c, 1, 1, 1) |
|
padding = [(k - 1) // 2 for k in kernel_size] |
|
return F.conv2d(x, kernel, padding=padding, stride=1, groups=c) |
|
|
|
|
|
def _compute_binary_kernel(window_size): |
|
r"""Creates a binary kernel to extract the patches. If the window size |
|
is HxW will create a (H*W)xHxW kernel. |
|
""" |
|
window_range = window_size[0] * window_size[1] |
|
kernel: torch.Tensor = torch.zeros(window_range, window_range) |
|
for i in range(window_range): |
|
kernel[i, i] += 1.0 |
|
return kernel.view(window_range, 1, window_size[0], window_size[1]) |
|
|
|
|
|
def median_blur(x, kernel_size=(3, 3)): |
|
b, c, h, w = x.shape |
|
kernel = _compute_binary_kernel(kernel_size).to(x.device).to(x.dtype) |
|
kernel = kernel.repeat(c, 1, 1, 1) |
|
padding = [(k - 1) // 2 for k in kernel_size] |
|
features = F.conv2d(x, kernel, padding=padding, stride=1, groups=c) |
|
features = features.view(b, c, -1, h, w) |
|
median = torch.median(features, dim=2)[0] |
|
return median |
|
|
|
|
|
def get_laplacian_kernel2d(kernel_size: int): |
|
r"""Function that returns Gaussian filter matrix coefficients. |
|
|
|
Args: |
|
kernel_size (int): filter size should be odd. |
|
|
|
Returns: |
|
Tensor: 2D tensor with laplacian filter matrix coefficients. |
|
|
|
Shape: |
|
- Output: :math:`(\text{kernel_size}_x, \text{kernel_size}_y)` |
|
|
|
Examples:: |
|
|
|
>>> kornia.image.get_laplacian_kernel2d(3) |
|
tensor([[ 1., 1., 1.], |
|
[ 1., -8., 1.], |
|
[ 1., 1., 1.]]) |
|
|
|
>>> kornia.image.get_laplacian_kernel2d(5) |
|
tensor([[ 1., 1., 1., 1., 1.], |
|
[ 1., 1., 1., 1., 1.], |
|
[ 1., 1., -24., 1., 1.], |
|
[ 1., 1., 1., 1., 1.], |
|
[ 1., 1., 1., 1., 1.]]) |
|
|
|
""" |
|
if not isinstance(kernel_size, int) or kernel_size % 2 == 0 or \ |
|
kernel_size <= 0: |
|
raise TypeError("ksize must be an odd positive integer. Got {}".format( |
|
kernel_size)) |
|
|
|
kernel = torch.ones((kernel_size, kernel_size)) |
|
mid = kernel_size // 2 |
|
kernel[mid, mid] = 1 - kernel_size**2 |
|
kernel_2d: torch.Tensor = kernel |
|
return kernel_2d |
|
|
|
|
|
def laplacian(x): |
|
|
|
b, c, h, w = x.shape |
|
kernel_size = 3 |
|
kernel = get_laplacian_kernel2d(kernel_size).to(x.device).to(x.dtype) |
|
kernel = kernel.repeat(c, 1, 1, 1) |
|
padding = (kernel_size - 1) // 2 |
|
return F.conv2d(x, kernel, padding=padding, stride=1, groups=c) |
|
|
|
|
|
|
|
|
|
|
|
def copy_state_dict(cur_state_dict, pre_state_dict, prefix='', load_name=None): |
|
|
|
def _get_params(key): |
|
key = prefix + key |
|
if key in pre_state_dict: |
|
return pre_state_dict[key] |
|
return None |
|
|
|
for k in cur_state_dict.keys(): |
|
if load_name is not None: |
|
if load_name not in k: |
|
continue |
|
v = _get_params(k) |
|
try: |
|
if v is None: |
|
|
|
continue |
|
cur_state_dict[k].copy_(v) |
|
except: |
|
|
|
continue |
|
|
|
|
|
def dict2obj(d): |
|
|
|
|
|
if not isinstance(d, dict): |
|
return d |
|
|
|
class C(object): |
|
pass |
|
|
|
o = C() |
|
for k in d: |
|
o.__dict__[k] = dict2obj(d[k]) |
|
return o |
|
|
|
|
|
|
|
|
|
|
|
def remove_module(state_dict): |
|
|
|
new_state_dict = OrderedDict() |
|
for k, v in state_dict.items(): |
|
name = k[7:] |
|
new_state_dict[name] = v |
|
return new_state_dict |
|
|
|
|
|
def tensor2image(tensor): |
|
image = tensor.detach().cpu().numpy() |
|
image = image * 255. |
|
image = np.maximum(np.minimum(image, 255), 0) |
|
image = image.transpose(1, 2, 0)[:, :, [2, 1, 0]] |
|
return image.astype(np.uint8).copy() |
|
|
|
|
|
def dict_tensor2npy(tensor_dict): |
|
npy_dict = {} |
|
for key in tensor_dict: |
|
npy_dict[key] = tensor_dict[key][0].cpu().numpy() |
|
return npy_dict |
|
|
|
|
|
def load_config(cfg_file): |
|
import yaml |
|
with open(cfg_file, 'r') as f: |
|
cfg = yaml.load(f, Loader=yaml.FullLoader) |
|
return cfg |
|
|
|
|
|
def move_dict_to_device(dict, device, tensor2float=False): |
|
for k, v in dict.items(): |
|
if isinstance(v, torch.Tensor): |
|
if tensor2float: |
|
dict[k] = v.float().to(device) |
|
else: |
|
dict[k] = v.to(device) |
|
|
|
|
|
def write_obj( |
|
obj_name, |
|
vertices, |
|
faces, |
|
colors=None, |
|
texture=None, |
|
uvcoords=None, |
|
uvfaces=None, |
|
inverse_face_order=False, |
|
normal_map=None, |
|
): |
|
''' Save 3D face model with texture. |
|
borrowed from https://github.com/YadiraF/PRNet/blob/master/utils/write.py |
|
Args: |
|
obj_name: str |
|
vertices: shape = (nver, 3) |
|
colors: shape = (nver, 3) |
|
faces: shape = (ntri, 3) |
|
texture: shape = (uv_size, uv_size, 3) |
|
uvcoords: shape = (nver, 2) max value<=1 |
|
''' |
|
if obj_name.split('.')[-1] != 'obj': |
|
obj_name = obj_name + '.obj' |
|
mtl_name = obj_name.replace('.obj', '.mtl') |
|
texture_name = obj_name.replace('.obj', '.png') |
|
material_name = 'FaceTexture' |
|
|
|
faces = faces.copy() |
|
|
|
faces += 1 |
|
if inverse_face_order: |
|
faces = faces[:, [2, 1, 0]] |
|
if uvfaces is not None: |
|
uvfaces = uvfaces[:, [2, 1, 0]] |
|
|
|
|
|
with open(obj_name, 'w') as f: |
|
if texture is not None: |
|
f.write('mtllib %s\n\n' % os.path.basename(mtl_name)) |
|
|
|
|
|
if colors is None: |
|
for i in range(vertices.shape[0]): |
|
f.write('v {} {} {}\n'.format(vertices[i, 0], vertices[i, 1], |
|
vertices[i, 2])) |
|
else: |
|
for i in range(vertices.shape[0]): |
|
f.write('v {} {} {} {} {} {}\n'.format(vertices[i, 0], |
|
vertices[i, 1], |
|
vertices[i, |
|
2], colors[i, |
|
0], |
|
colors[i, |
|
1], colors[i, |
|
2])) |
|
|
|
|
|
if texture is None: |
|
for i in range(faces.shape[0]): |
|
f.write('f {} {} {}\n'.format(faces[i, 0], faces[i, 1], |
|
faces[i, 2])) |
|
else: |
|
for i in range(uvcoords.shape[0]): |
|
f.write('vt {} {}\n'.format(uvcoords[i, 0], uvcoords[i, 1])) |
|
f.write('usemtl %s\n' % material_name) |
|
|
|
uvfaces = uvfaces + 1 |
|
for i in range(faces.shape[0]): |
|
f.write('f {}/{} {}/{} {}/{}\n'.format(faces[i, 0], uvfaces[i, |
|
0], |
|
faces[i, 1], uvfaces[i, |
|
1], |
|
faces[i, |
|
2], uvfaces[i, |
|
2])) |
|
|
|
with open(mtl_name, 'w') as f: |
|
f.write('newmtl %s\n' % material_name) |
|
s = 'map_Kd {}\n'.format( |
|
os.path.basename(texture_name)) |
|
f.write(s) |
|
|
|
if normal_map is not None: |
|
if torch.is_tensor(normal_map): |
|
normal_map = normal_map.detach().cpu().numpy().squeeze( |
|
) |
|
|
|
normal_map = np.transpose(normal_map, (1, 2, 0)) |
|
name, _ = os.path.splitext(obj_name) |
|
normal_name = f'{name}_normals.png' |
|
f.write(f'disp {normal_name}') |
|
|
|
out_normal_map = normal_map / (np.linalg.norm( |
|
normal_map, axis=-1, keepdims=True) + 1e-9) |
|
out_normal_map = (out_normal_map + 1) * 0.5 |
|
|
|
cv2.imwrite(normal_name, (out_normal_map * 255).astype( |
|
np.uint8)[:, :, ::-1]) |
|
|
|
cv2.imwrite(texture_name, texture) |
|
|
|
|
|
def save_pkl(savepath, params, ind=0): |
|
out_data = {} |
|
for k, v in params.items(): |
|
if torch.is_tensor(v): |
|
out_data[k] = v[ind].detach().cpu().numpy() |
|
else: |
|
out_data[k] = v |
|
|
|
with open(savepath, 'wb') as f: |
|
pickle.dump(out_data, f, protocol=2) |
|
|
|
|
|
|
|
|
|
|
|
def load_obj(obj_filename): |
|
""" Ref: https://github.com/facebookresearch/pytorch3d/blob/25c065e9dafa90163e7cec873dbb324a637c68b7/pytorch3d/io/obj_io.py |
|
Load a mesh from a file-like object. |
|
""" |
|
with open(obj_filename, 'r') as f: |
|
lines = [line.strip() for line in f] |
|
|
|
verts, uvcoords = [], [] |
|
faces, uv_faces = [], [] |
|
|
|
|
|
if lines and isinstance(lines[0], bytes): |
|
lines = [el.decode("utf-8") for el in lines] |
|
|
|
for line in lines: |
|
tokens = line.strip().split() |
|
if line.startswith("v "): |
|
vert = [float(x) for x in tokens[1:4]] |
|
if len(vert) != 3: |
|
msg = "Vertex %s does not have 3 values. Line: %s" |
|
raise ValueError(msg % (str(vert), str(line))) |
|
verts.append(vert) |
|
elif line.startswith("vt "): |
|
tx = [float(x) for x in tokens[1:3]] |
|
if len(tx) != 2: |
|
raise ValueError( |
|
"Texture %s does not have 2 values. Line: %s" % |
|
(str(tx), str(line))) |
|
uvcoords.append(tx) |
|
elif line.startswith("f "): |
|
|
|
face = tokens[1:] |
|
face_list = [f.split("/") for f in face] |
|
for vert_props in face_list: |
|
|
|
faces.append(int(vert_props[0])) |
|
if len(vert_props) > 1: |
|
if vert_props[1] != "": |
|
|
|
uv_faces.append(int(vert_props[1])) |
|
|
|
verts = torch.tensor(verts, dtype=torch.float32) |
|
uvcoords = torch.tensor(uvcoords, dtype=torch.float32) |
|
faces = torch.tensor(faces, dtype=torch.long) |
|
faces = faces.reshape(-1, 3) - 1 |
|
uv_faces = torch.tensor(uv_faces, dtype=torch.long) |
|
uv_faces = uv_faces.reshape(-1, 3) - 1 |
|
return (verts, uvcoords, faces, uv_faces) |
|
|
|
|
|
|
|
def draw_rectangle(img, |
|
bbox, |
|
bbox_color=(255, 255, 255), |
|
thickness=3, |
|
is_opaque=False, |
|
alpha=0.5): |
|
"""Draws the rectangle around the object |
|
borrowed from: https://bbox-visualizer.readthedocs.io/en/latest/_modules/bbox_visualizer/bbox_visualizer.html |
|
Parameters |
|
---------- |
|
img : ndarray |
|
the actual image |
|
bbox : list |
|
a list containing x_min, y_min, x_max and y_max of the rectangle positions |
|
bbox_color : tuple, optional |
|
the color of the box, by default (255,255,255) |
|
thickness : int, optional |
|
thickness of the outline of the box, by default 3 |
|
is_opaque : bool, optional |
|
if False, draws a solid rectangular outline. Else, a filled rectangle which is semi transparent, by default False |
|
alpha : float, optional |
|
strength of the opacity, by default 0.5 |
|
|
|
Returns |
|
------- |
|
ndarray |
|
the image with the bounding box drawn |
|
""" |
|
|
|
output = img.copy() |
|
if not is_opaque: |
|
cv2.rectangle(output, (bbox[0], bbox[1]), (bbox[2], bbox[3]), |
|
bbox_color, thickness) |
|
else: |
|
overlay = img.copy() |
|
|
|
cv2.rectangle(overlay, (bbox[0], bbox[1]), (bbox[2], bbox[3]), |
|
bbox_color, -1) |
|
|
|
|
|
return output |
|
|
|
|
|
def plot_bbox(image, bbox): |
|
''' Draw bbox |
|
Args: |
|
image: the input image |
|
bbox: [left, top, right, bottom] |
|
''' |
|
image = cv2.rectangle(image.copy(), (bbox[1], bbox[0]), (bbox[3], bbox[2]), |
|
[0, 255, 0], |
|
thickness=3) |
|
|
|
return image |
|
|
|
|
|
end_list = np.array([17, 22, 27, 42, 48, 31, 36, 68], dtype=np.int32) - 1 |
|
|
|
|
|
def plot_kpts(image, kpts, color='r'): |
|
''' Draw 68 key points |
|
Args: |
|
image: the input image |
|
kpt: (68, 3). |
|
''' |
|
kpts = kpts.copy().astype(np.int32) |
|
if color == 'r': |
|
c = (255, 0, 0) |
|
elif color == 'g': |
|
c = (0, 255, 0) |
|
elif color == 'b': |
|
c = (255, 0, 0) |
|
image = image.copy() |
|
kpts = kpts.copy() |
|
|
|
for i in range(kpts.shape[0]): |
|
st = kpts[i, :2] |
|
if kpts.shape[1] == 4: |
|
if kpts[i, 3] > 0.5: |
|
c = (0, 255, 0) |
|
else: |
|
c = (0, 0, 255) |
|
image = cv2.circle(image, (st[0], st[1]), 1, c, 2) |
|
if i in end_list: |
|
continue |
|
ed = kpts[i + 1, :2] |
|
image = cv2.line(image, (st[0], st[1]), (ed[0], ed[1]), |
|
(255, 255, 255), 1) |
|
|
|
return image |
|
|
|
|
|
def plot_verts(image, kpts, color='r'): |
|
''' Draw 68 key points |
|
Args: |
|
image: the input image |
|
kpt: (68, 3). |
|
''' |
|
kpts = kpts.copy().astype(np.int32) |
|
if color == 'r': |
|
c = (255, 0, 0) |
|
elif color == 'g': |
|
c = (0, 255, 0) |
|
elif color == 'b': |
|
c = (0, 0, 255) |
|
elif color == 'y': |
|
c = (0, 255, 255) |
|
image = image.copy() |
|
|
|
for i in range(kpts.shape[0]): |
|
st = kpts[i, :2] |
|
image = cv2.circle(image, (st[0], st[1]), 1, c, 5) |
|
|
|
return image |
|
|
|
|
|
def tensor_vis_landmarks(images, |
|
landmarks, |
|
gt_landmarks=None, |
|
color='g', |
|
isScale=True): |
|
|
|
vis_landmarks = [] |
|
images = images.cpu().numpy() |
|
predicted_landmarks = landmarks.detach().cpu().numpy() |
|
if gt_landmarks is not None: |
|
gt_landmarks_np = gt_landmarks.detach().cpu().numpy() |
|
for i in range(images.shape[0]): |
|
image = images[i] |
|
image = image.transpose(1, 2, 0)[:, :, [2, 1, 0]].copy() |
|
image = (image * 255) |
|
if isScale: |
|
predicted_landmark = predicted_landmarks[i] * \ |
|
image.shape[0]/2 + image.shape[0]/2 |
|
else: |
|
predicted_landmark = predicted_landmarks[i] |
|
if predicted_landmark.shape[0] == 68: |
|
image_landmarks = plot_kpts(image, predicted_landmark, color) |
|
if gt_landmarks is not None: |
|
image_landmarks = plot_verts( |
|
image_landmarks, gt_landmarks_np[i] * image.shape[0] / 2 + |
|
image.shape[0] / 2, 'r') |
|
else: |
|
image_landmarks = plot_verts(image, predicted_landmark, color) |
|
if gt_landmarks is not None: |
|
image_landmarks = plot_verts( |
|
image_landmarks, gt_landmarks_np[i] * image.shape[0] / 2 + |
|
image.shape[0] / 2, 'r') |
|
vis_landmarks.append(image_landmarks) |
|
|
|
vis_landmarks = np.stack(vis_landmarks) |
|
vis_landmarks = torch.from_numpy( |
|
vis_landmarks[:, :, :, [2, 1, 0]].transpose( |
|
0, 3, 1, 2)) / 255. |
|
return vis_landmarks |
|
|