|
""" |
|
Copyright (c) Microsoft Corporation. |
|
Licensed under the MIT license. |
|
|
|
""" |
|
|
|
from __future__ import absolute_import, division, print_function, unicode_literals |
|
|
|
import logging |
|
import math |
|
import os |
|
import code |
|
import torch |
|
from torch import nn |
|
from .transformers.bert.modeling_bert import BertPreTrainedModel, BertEmbeddings, BertPooler, BertIntermediate, BertOutput, BertSelfOutput |
|
|
|
|
|
from .transformers.bert.modeling_utils import prune_linear_layer |
|
|
|
LayerNormClass = torch.nn.LayerNorm |
|
BertLayerNorm = torch.nn.LayerNorm |
|
from .transformers.bert import BertConfig |
|
|
|
|
|
class BertSelfAttention(nn.Module): |
|
def __init__(self, config): |
|
super(BertSelfAttention, self).__init__() |
|
if config.hidden_size % config.num_attention_heads != 0: |
|
raise ValueError( |
|
"The hidden size (%d) is not a multiple of the number of attention " |
|
"heads (%d)" % (config.hidden_size, config.num_attention_heads) |
|
) |
|
self.output_attentions = config.output_attentions |
|
|
|
self.num_attention_heads = config.num_attention_heads |
|
self.attention_head_size = int(config.hidden_size / config.num_attention_heads) |
|
self.all_head_size = self.num_attention_heads * self.attention_head_size |
|
|
|
self.query = nn.Linear(config.hidden_size, self.all_head_size) |
|
self.key = nn.Linear(config.hidden_size, self.all_head_size) |
|
self.value = nn.Linear(config.hidden_size, self.all_head_size) |
|
|
|
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) |
|
|
|
def transpose_for_scores(self, x): |
|
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) |
|
x = x.view(*new_x_shape) |
|
return x.permute(0, 2, 1, 3) |
|
|
|
def forward(self, hidden_states, attention_mask, head_mask=None, history_state=None): |
|
if history_state is not None: |
|
raise |
|
x_states = torch.cat([history_state, hidden_states], dim=1) |
|
mixed_query_layer = self.query(hidden_states) |
|
mixed_key_layer = self.key(x_states) |
|
mixed_value_layer = self.value(x_states) |
|
else: |
|
mixed_query_layer = self.query(hidden_states) |
|
mixed_key_layer = self.key(hidden_states) |
|
mixed_value_layer = self.value(hidden_states) |
|
|
|
|
|
query_layer = self.transpose_for_scores(mixed_query_layer) |
|
key_layer = self.transpose_for_scores(mixed_key_layer) |
|
value_layer = self.transpose_for_scores(mixed_value_layer) |
|
|
|
|
|
|
|
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) |
|
attention_scores = attention_scores / math.sqrt(self.attention_head_size) |
|
|
|
attention_scores = attention_scores + attention_mask |
|
|
|
|
|
attention_probs = nn.Softmax(dim=-1)(attention_scores) |
|
|
|
|
|
|
|
attention_probs = self.dropout(attention_probs) |
|
|
|
|
|
if head_mask is not None: |
|
raise |
|
attention_probs = attention_probs * head_mask |
|
|
|
context_layer = torch.matmul(attention_probs, value_layer) |
|
|
|
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() |
|
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size, ) |
|
context_layer = context_layer.view(*new_context_layer_shape) |
|
|
|
outputs = (context_layer, attention_probs) if self.output_attentions else (context_layer, ) |
|
return outputs |
|
|
|
|
|
class BertAttention(nn.Module): |
|
def __init__(self, config): |
|
super(BertAttention, self).__init__() |
|
self.self = BertSelfAttention(config) |
|
self.output = BertSelfOutput(config) |
|
|
|
def prune_heads(self, heads): |
|
if len(heads) == 0: |
|
return |
|
mask = torch.ones(self.self.num_attention_heads, self.self.attention_head_size) |
|
for head in heads: |
|
mask[head] = 0 |
|
mask = mask.view(-1).contiguous().eq(1) |
|
index = torch.arange(len(mask))[mask].long() |
|
|
|
self.self.query = prune_linear_layer(self.self.query, index) |
|
self.self.key = prune_linear_layer(self.self.key, index) |
|
self.self.value = prune_linear_layer(self.self.value, index) |
|
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) |
|
|
|
self.self.num_attention_heads = self.self.num_attention_heads - len(heads) |
|
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads |
|
|
|
def forward(self, input_tensor, attention_mask, head_mask=None, history_state=None): |
|
self_outputs = self.self(input_tensor, attention_mask, head_mask, history_state) |
|
attention_output = self.output(self_outputs[0], input_tensor) |
|
outputs = (attention_output, ) + self_outputs[1:] |
|
return outputs |
|
|
|
|
|
class AttLayer(nn.Module): |
|
def __init__(self, config): |
|
super(AttLayer, self).__init__() |
|
self.attention = BertAttention(config) |
|
|
|
self.intermediate = BertIntermediate(config) |
|
self.output = BertOutput(config) |
|
|
|
def MHA(self, hidden_states, attention_mask, head_mask=None, history_state=None): |
|
attention_outputs = self.attention(hidden_states, attention_mask, head_mask, history_state) |
|
attention_output = attention_outputs[0] |
|
|
|
|
|
|
|
intermediate_output = self.intermediate(attention_output) |
|
|
|
layer_output = self.output(intermediate_output, attention_output) |
|
|
|
outputs = (layer_output, ) + attention_outputs[1:] |
|
return outputs |
|
|
|
def forward(self, hidden_states, attention_mask, head_mask=None, history_state=None): |
|
return self.MHA(hidden_states, attention_mask, head_mask, history_state) |
|
|
|
|
|
class AttEncoder(nn.Module): |
|
def __init__(self, config): |
|
super(AttEncoder, self).__init__() |
|
self.output_attentions = config.output_attentions |
|
self.output_hidden_states = config.output_hidden_states |
|
self.layer = nn.ModuleList([AttLayer(config) for _ in range(config.num_hidden_layers)]) |
|
|
|
def forward(self, hidden_states, attention_mask, head_mask=None, encoder_history_states=None): |
|
all_hidden_states = () |
|
all_attentions = () |
|
for i, layer_module in enumerate(self.layer): |
|
if self.output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states, ) |
|
|
|
history_state = None if encoder_history_states is None else encoder_history_states[i] |
|
layer_outputs = layer_module(hidden_states, attention_mask, head_mask[i], history_state) |
|
hidden_states = layer_outputs[0] |
|
|
|
if self.output_attentions: |
|
all_attentions = all_attentions + (layer_outputs[1], ) |
|
|
|
|
|
if self.output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states, ) |
|
|
|
outputs = (hidden_states, ) |
|
if self.output_hidden_states: |
|
outputs = outputs + (all_hidden_states, ) |
|
if self.output_attentions: |
|
outputs = outputs + (all_attentions, ) |
|
|
|
return outputs |
|
|
|
|
|
class EncoderBlock(BertPreTrainedModel): |
|
def __init__(self, config): |
|
super(EncoderBlock, self).__init__(config) |
|
self.config = config |
|
|
|
self.encoder = AttEncoder(config) |
|
|
|
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) |
|
self.img_dim = config.img_feature_dim |
|
|
|
try: |
|
self.use_img_layernorm = config.use_img_layernorm |
|
except: |
|
self.use_img_layernorm = None |
|
|
|
self.img_embedding = nn.Linear(self.img_dim, self.config.hidden_size, bias=True) |
|
|
|
if self.use_img_layernorm: |
|
self.LayerNorm = LayerNormClass(config.hidden_size, eps=config.img_layer_norm_eps) |
|
|
|
self.apply(self.init_weights) |
|
|
|
def _prune_heads(self, heads_to_prune): |
|
""" Prunes heads of the model. |
|
heads_to_prune: dict of {layer_num: list of heads to prune in this layer} |
|
See base class PreTrainedModel |
|
""" |
|
for layer, heads in heads_to_prune.items(): |
|
self.encoder.layer[layer].attention.prune_heads(heads) |
|
|
|
def forward( |
|
self, |
|
img_feats, |
|
input_ids=None, |
|
token_type_ids=None, |
|
attention_mask=None, |
|
position_ids=None, |
|
head_mask=None |
|
): |
|
|
|
batch_size = len(img_feats) |
|
seq_length = len(img_feats[0]) |
|
input_ids = torch.zeros([batch_size, seq_length], dtype=torch.long).to(img_feats.device) |
|
|
|
if position_ids is None: |
|
position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device) |
|
position_ids = position_ids.unsqueeze(0).expand_as(input_ids) |
|
|
|
|
|
|
|
|
|
position_embeddings = self.position_embeddings(position_ids) |
|
|
|
|
|
|
|
|
|
if attention_mask is None: |
|
attention_mask = torch.ones_like(input_ids) |
|
else: |
|
raise |
|
|
|
if token_type_ids is None: |
|
token_type_ids = torch.zeros_like(input_ids) |
|
else: |
|
raise |
|
|
|
if attention_mask.dim() == 2: |
|
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) |
|
elif attention_mask.dim() == 3: |
|
extended_attention_mask = attention_mask.unsqueeze(1) |
|
else: |
|
raise NotImplementedError |
|
|
|
|
|
extended_attention_mask = extended_attention_mask.to( |
|
dtype=img_feats.dtype |
|
) |
|
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 |
|
|
|
if head_mask is not None: |
|
raise |
|
if head_mask.dim() == 1: |
|
head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1) |
|
head_mask = head_mask.expand(self.config.num_hidden_layers, -1, -1, -1, -1) |
|
elif head_mask.dim() == 2: |
|
head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze( |
|
-1 |
|
) |
|
head_mask = head_mask.to( |
|
dtype=next(self.parameters()).dtype |
|
) |
|
else: |
|
head_mask = [None] * self.config.num_hidden_layers |
|
|
|
|
|
|
|
img_embedding_output = self.img_embedding(img_feats) |
|
|
|
|
|
|
|
embeddings = position_embeddings + img_embedding_output |
|
|
|
if self.use_img_layernorm: |
|
embeddings = self.LayerNorm(embeddings) |
|
|
|
|
|
|
|
encoder_outputs = self.encoder(embeddings, extended_attention_mask, head_mask=head_mask) |
|
sequence_output = encoder_outputs[0] |
|
|
|
outputs = (sequence_output, ) |
|
if self.config.output_hidden_states: |
|
all_hidden_states = encoder_outputs[1] |
|
outputs = outputs + (all_hidden_states, ) |
|
if self.config.output_attentions: |
|
all_attentions = encoder_outputs[-1] |
|
outputs = outputs + (all_attentions, ) |
|
|
|
return outputs |
|
|
|
|
|
def get_att_block( |
|
img_feature_dim=2048, |
|
output_feat_dim=512, |
|
hidden_feat_dim=1024, |
|
num_attention_heads=4, |
|
num_hidden_layers=1 |
|
): |
|
|
|
config_class = BertConfig |
|
config = config_class.from_pretrained('lib/pymafx/models/transformers/bert/bert-base-uncased/') |
|
|
|
interm_size_scale = 2 |
|
|
|
config.output_attentions = False |
|
|
|
config.img_feature_dim = img_feature_dim |
|
|
|
config.hidden_size = hidden_feat_dim |
|
config.intermediate_size = int(config.hidden_size * interm_size_scale) |
|
config.num_hidden_layers = num_hidden_layers |
|
config.num_attention_heads = num_attention_heads |
|
config.max_position_embeddings = 900 |
|
|
|
|
|
assert config.hidden_size % config.num_attention_heads == 0 |
|
|
|
att_model = EncoderBlock(config=config) |
|
|
|
return att_model |
|
|
|
|
|
class Graphormer(BertPreTrainedModel): |
|
''' |
|
The archtecture of a transformer encoder block we used in Graphormer |
|
''' |
|
def __init__(self, config): |
|
super(Graphormer, self).__init__(config) |
|
self.config = config |
|
self.bert = EncoderBlock(config) |
|
self.cls_head = nn.Linear(config.hidden_size, self.config.output_feature_dim) |
|
self.residual = nn.Linear(config.img_feature_dim, self.config.output_feature_dim) |
|
self.apply(self.init_weights) |
|
|
|
def forward( |
|
self, |
|
img_feats, |
|
input_ids=None, |
|
token_type_ids=None, |
|
attention_mask=None, |
|
masked_lm_labels=None, |
|
next_sentence_label=None, |
|
position_ids=None, |
|
head_mask=None |
|
): |
|
''' |
|
# self.bert has three outputs |
|
# predictions[0]: output tokens |
|
# predictions[1]: all_hidden_states, if enable "self.config.output_hidden_states" |
|
# predictions[2]: attentions, if enable "self.config.output_attentions" |
|
''' |
|
predictions = self.bert( |
|
img_feats=img_feats, |
|
input_ids=input_ids, |
|
position_ids=position_ids, |
|
token_type_ids=token_type_ids, |
|
attention_mask=attention_mask, |
|
head_mask=head_mask |
|
) |
|
|
|
|
|
pred_score = self.cls_head(predictions[0]) |
|
res_img_feats = self.residual(img_feats) |
|
pred_score = pred_score + res_img_feats |
|
|
|
|
|
if self.config.output_attentions and self.config.output_hidden_states: |
|
return pred_score, predictions[1], predictions[-1] |
|
else: |
|
return pred_score |
|
|