|
import torch |
|
import numpy as np |
|
import logging |
|
from copy import deepcopy |
|
from .utils.libkdtree import KDTree |
|
|
|
logger_py = logging.getLogger(__name__) |
|
|
|
|
|
def compute_iou(occ1, occ2): |
|
''' Computes the Intersection over Union (IoU) value for two sets of |
|
occupancy values. |
|
Args: |
|
occ1 (tensor): first set of occupancy values |
|
occ2 (tensor): second set of occupancy values |
|
''' |
|
occ1 = np.asarray(occ1) |
|
occ2 = np.asarray(occ2) |
|
|
|
|
|
|
|
if occ1.ndim >= 2: |
|
occ1 = occ1.reshape(occ1.shape[0], -1) |
|
if occ2.ndim >= 2: |
|
occ2 = occ2.reshape(occ2.shape[0], -1) |
|
|
|
|
|
occ1 = (occ1 >= 0.5) |
|
occ2 = (occ2 >= 0.5) |
|
|
|
|
|
area_union = (occ1 | occ2).astype(np.float32).sum(axis=-1) |
|
area_intersect = (occ1 & occ2).astype(np.float32).sum(axis=-1) |
|
|
|
iou = (area_intersect / area_union) |
|
|
|
return iou |
|
|
|
|
|
def rgb2gray(rgb): |
|
''' rgb of size B x h x w x 3 |
|
''' |
|
r, g, b = rgb[:, :, :, 0], rgb[:, :, :, 1], rgb[:, :, :, 2] |
|
gray = 0.2989 * r + 0.5870 * g + 0.1140 * b |
|
|
|
return gray |
|
|
|
|
|
def sample_patch_points( |
|
batch_size, n_points, patch_size=1, image_resolution=(128, 128), continuous=True |
|
): |
|
''' Returns sampled points in the range [-1, 1]. |
|
|
|
Args: |
|
batch_size (int): required batch size |
|
n_points (int): number of points to sample |
|
patch_size (int): size of patch; if > 1, patches of size patch_size |
|
are sampled instead of individual points |
|
image_resolution (tuple): image resolution (required for calculating |
|
the pixel distances) |
|
continuous (bool): whether to sample continuously or only on pixel |
|
locations |
|
''' |
|
assert (patch_size > 0) |
|
|
|
|
|
h_step = 1. / image_resolution[0] |
|
w_step = 1. / image_resolution[1] |
|
|
|
patch_size_squared = patch_size**2 |
|
n_patches = int(n_points / patch_size_squared) |
|
if continuous: |
|
p = torch.rand(batch_size, n_patches, 2) |
|
else: |
|
px = torch.randint(0, image_resolution[1], |
|
size=(batch_size, n_patches, 1)).float() / (image_resolution[1] - 1) |
|
py = torch.randint(0, image_resolution[0], |
|
size=(batch_size, n_patches, 1)).float() / (image_resolution[0] - 1) |
|
p = torch.cat([px, py], dim=-1) |
|
|
|
p[:, :, 0] *= 1 - (patch_size - 1) * w_step |
|
p[:, :, 1] *= 1 - (patch_size - 1) * h_step |
|
|
|
|
|
patch_arange = torch.arange(patch_size) |
|
x_offset, y_offset = torch.meshgrid(patch_arange, patch_arange) |
|
patch_offsets = torch.stack([x_offset.reshape(-1), y_offset.reshape(-1)], |
|
dim=1).view(1, 1, -1, 2).repeat(batch_size, n_patches, 1, 1).float() |
|
|
|
patch_offsets[:, :, :, 0] *= w_step |
|
patch_offsets[:, :, :, 1] *= h_step |
|
|
|
|
|
p = p.view(batch_size, n_patches, 1, 2) + patch_offsets |
|
|
|
|
|
p = p * 2 - 1 |
|
|
|
p = p.view(batch_size, -1, 2) |
|
|
|
amax, amin = p.max(), p.min() |
|
assert (amax <= 1. and amin >= -1.) |
|
|
|
return p |
|
|
|
|
|
def get_proposal_points_in_unit_cube(ray0, ray_direction, padding=0.1, eps=1e-6, n_steps=40): |
|
''' Returns n_steps equally spaced points inside the unit cube on the rays |
|
cast from ray0 with direction ray_direction. |
|
|
|
This function is used to get the ray marching points {p^ray_j} for a given |
|
camera position ray0 and |
|
a given ray direction ray_direction which goes from the camera_position to |
|
the pixel location. |
|
|
|
NOTE: The returned values d_proposal are the lengths of the ray: |
|
p^ray_j = ray0 + d_proposal_j * ray_direction |
|
|
|
Args: |
|
ray0 (tensor): Start positions of the rays |
|
ray_direction (tensor): Directions of rays |
|
padding (float): Padding which is applied to the unit cube |
|
eps (float): The epsilon value for numerical stability |
|
n_steps (int): number of steps |
|
''' |
|
batch_size, n_pts, _ = ray0.shape |
|
device = ray0.device |
|
|
|
p_intervals, d_intervals, mask_inside_cube = \ |
|
check_ray_intersection_with_unit_cube(ray0, ray_direction, padding, |
|
eps) |
|
d_proposal = d_intervals[:, :, 0].unsqueeze(-1) + \ |
|
torch.linspace(0, 1, steps=n_steps).to(device).view(1, 1, -1) * \ |
|
(d_intervals[:, :, 1] - d_intervals[:, :, 0]).unsqueeze(-1) |
|
d_proposal = d_proposal.unsqueeze(-1) |
|
|
|
return d_proposal, mask_inside_cube |
|
|
|
|
|
def check_ray_intersection_with_unit_cube(ray0, ray_direction, padding=0.1, eps=1e-6, scale=2.0): |
|
''' Checks if rays ray0 + d * ray_direction intersect with unit cube with |
|
padding padding. |
|
|
|
It returns the two intersection points as well as the sorted ray lengths d. |
|
|
|
Args: |
|
ray0 (tensor): Start positions of the rays |
|
ray_direction (tensor): Directions of rays |
|
padding (float): Padding which is applied to the unit cube |
|
eps (float): The epsilon value for numerical stability |
|
scale (float): cube size |
|
''' |
|
batch_size, n_pts, _ = ray0.shape |
|
device = ray0.device |
|
|
|
|
|
|
|
|
|
|
|
|
|
p_distance = (scale * 0.5) + padding / 2 |
|
p_e = torch.ones(batch_size, n_pts, 6).to(device) * p_distance |
|
p_e[:, :, 3:] *= -1. |
|
|
|
|
|
nominator = p_e - ray0.repeat(1, 1, 2) |
|
denominator = ray_direction.repeat(1, 1, 2) |
|
d_intersect = nominator / denominator |
|
p_intersect = ray0.unsqueeze(-2) + d_intersect.unsqueeze(-1) * \ |
|
ray_direction.unsqueeze(-2) |
|
|
|
|
|
p_mask_inside_cube = ( |
|
(p_intersect[:, :, :, 0] <= p_distance + eps) & |
|
(p_intersect[:, :, :, 1] <= p_distance + eps) & |
|
(p_intersect[:, :, :, 2] <= p_distance + eps) & |
|
(p_intersect[:, :, :, 0] >= -(p_distance + eps)) & |
|
(p_intersect[:, :, :, 1] >= -(p_distance + eps)) & |
|
(p_intersect[:, :, :, 2] >= -(p_distance + eps)) |
|
).cpu() |
|
|
|
|
|
mask_inside_cube = p_mask_inside_cube.sum(-1) == 2 |
|
|
|
|
|
p_intervals = p_intersect[mask_inside_cube][p_mask_inside_cube[mask_inside_cube]].view(-1, 2, 3) |
|
p_intervals_batch = torch.zeros(batch_size, n_pts, 2, 3).to(device) |
|
p_intervals_batch[mask_inside_cube] = p_intervals |
|
|
|
|
|
d_intervals_batch = torch.zeros(batch_size, n_pts, 2).to(device) |
|
norm_ray = torch.norm(ray_direction[mask_inside_cube], dim=-1) |
|
d_intervals_batch[mask_inside_cube] = torch.stack( |
|
[ |
|
torch.norm(p_intervals[:, 0] - ray0[mask_inside_cube], dim=-1) / norm_ray, |
|
torch.norm(p_intervals[:, 1] - ray0[mask_inside_cube], dim=-1) / norm_ray, |
|
], |
|
dim=-1 |
|
) |
|
|
|
|
|
d_intervals_batch, indices_sort = d_intervals_batch.sort() |
|
p_intervals_batch = p_intervals_batch[torch.arange(batch_size).view(-1, 1, 1), |
|
torch.arange(n_pts).view(1, -1, 1), indices_sort] |
|
|
|
return p_intervals_batch, d_intervals_batch, mask_inside_cube |
|
|
|
|
|
def intersect_camera_rays_with_unit_cube( |
|
pixels, camera_mat, world_mat, scale_mat, padding=0.1, eps=1e-6, use_ray_length_as_depth=True |
|
): |
|
''' Returns the intersection points of ray cast from camera origin to |
|
pixel points p on the image plane. |
|
|
|
The function returns the intersection points as well the depth values and |
|
a mask specifying which ray intersects the unit cube. |
|
|
|
Args: |
|
pixels (tensor): Pixel points on image plane (range [-1, 1]) |
|
camera_mat (tensor): camera matrix |
|
world_mat (tensor): world matrix |
|
scale_mat (tensor): scale matrix |
|
padding (float): Padding which is applied to the unit cube |
|
eps (float): The epsilon value for numerical stability |
|
|
|
''' |
|
batch_size, n_points, _ = pixels.shape |
|
|
|
pixel_world = image_points_to_world(pixels, camera_mat, world_mat, scale_mat) |
|
camera_world = origin_to_world(n_points, camera_mat, world_mat, scale_mat) |
|
ray_vector = (pixel_world - camera_world) |
|
|
|
p_cube, d_cube, mask_cube = check_ray_intersection_with_unit_cube( |
|
camera_world, ray_vector, padding=padding, eps=eps |
|
) |
|
if not use_ray_length_as_depth: |
|
p_cam = transform_to_camera_space( |
|
p_cube.view(batch_size, -1, 3), camera_mat, world_mat, scale_mat |
|
).view(batch_size, n_points, -1, 3) |
|
d_cube = p_cam[:, :, :, -1] |
|
return p_cube, d_cube, mask_cube |
|
|
|
|
|
def arange_pixels(resolution=(128, 128), batch_size=1, image_range=(-1., 1.), subsample_to=None): |
|
''' Arranges pixels for given resolution in range image_range. |
|
|
|
The function returns the unscaled pixel locations as integers and the |
|
scaled float values. |
|
|
|
Args: |
|
resolution (tuple): image resolution |
|
batch_size (int): batch size |
|
image_range (tuple): range of output points (default [-1, 1]) |
|
subsample_to (int): if integer and > 0, the points are randomly |
|
subsampled to this value |
|
''' |
|
h, w = resolution |
|
n_points = resolution[0] * resolution[1] |
|
|
|
|
|
pixel_locations = torch.meshgrid(torch.arange(0, w), torch.arange(0, h)) |
|
pixel_locations = torch.stack([pixel_locations[0], pixel_locations[1]], |
|
dim=-1).long().view(1, -1, 2).repeat(batch_size, 1, 1) |
|
pixel_scaled = pixel_locations.clone().float() |
|
|
|
|
|
scale = (image_range[1] - image_range[0]) |
|
loc = scale / 2 |
|
pixel_scaled[:, :, 0] = scale * pixel_scaled[:, :, 0] / (w - 1) - loc |
|
pixel_scaled[:, :, 1] = scale * pixel_scaled[:, :, 1] / (h - 1) - loc |
|
|
|
|
|
if (subsample_to is not None and subsample_to > 0 and subsample_to < n_points): |
|
idx = np.random.choice(pixel_scaled.shape[1], size=(subsample_to, ), replace=False) |
|
pixel_scaled = pixel_scaled[:, idx] |
|
pixel_locations = pixel_locations[:, idx] |
|
|
|
return pixel_locations, pixel_scaled |
|
|
|
|
|
def to_pytorch(tensor, return_type=False): |
|
''' Converts input tensor to pytorch. |
|
|
|
Args: |
|
tensor (tensor): Numpy or Pytorch tensor |
|
return_type (bool): whether to return input type |
|
''' |
|
is_numpy = False |
|
if type(tensor) == np.ndarray: |
|
tensor = torch.from_numpy(tensor) |
|
is_numpy = True |
|
tensor = tensor.clone() |
|
if return_type: |
|
return tensor, is_numpy |
|
return tensor |
|
|
|
|
|
def get_mask(tensor): |
|
''' Returns mask of non-illegal values for tensor. |
|
|
|
Args: |
|
tensor (tensor): Numpy or Pytorch tensor |
|
''' |
|
tensor, is_numpy = to_pytorch(tensor, True) |
|
mask = ((abs(tensor) != np.inf) & (torch.isnan(tensor) == False)) |
|
mask = mask.to(torch.bool) |
|
if is_numpy: |
|
mask = mask.numpy() |
|
|
|
return mask |
|
|
|
|
|
def transform_mesh(mesh, transform): |
|
''' Transforms a mesh with given transformation. |
|
|
|
Args: |
|
mesh (trimesh mesh): mesh |
|
transform (tensor): transformation matrix of size 4 x 4 |
|
''' |
|
mesh = deepcopy(mesh) |
|
v = np.asarray(mesh.vertices).astype(np.float32) |
|
v_transformed = transform_pointcloud(v, transform) |
|
mesh.vertices = v_transformed |
|
return mesh |
|
|
|
|
|
def transform_pointcloud(pointcloud, transform): |
|
''' Transforms a point cloud with given transformation. |
|
|
|
Args: |
|
pointcloud (tensor): tensor of size N x 3 |
|
transform (tensor): transformation of size 4 x 4 |
|
''' |
|
|
|
assert (transform.shape == (4, 4) and pointcloud.shape[-1] == 3) |
|
|
|
pcl, is_numpy = to_pytorch(pointcloud, True) |
|
transform = to_pytorch(transform) |
|
|
|
|
|
pcl_hom = torch.cat([pcl, torch.ones(pcl.shape[0], 1)], dim=-1).transpose(1, 0) |
|
|
|
|
|
pcl_hom_transformed = transform @ pcl_hom |
|
|
|
|
|
pcl_out = pcl_hom_transformed[:3].transpose(1, 0) |
|
if is_numpy: |
|
pcl_out = pcl_out.numpy() |
|
|
|
return pcl_out |
|
|
|
|
|
def transform_points_batch(p, transform): |
|
''' Transform points tensor with given transform. |
|
|
|
Args: |
|
p (tensor): tensor of size B x N x 3 |
|
transform (tensor): transformation of size B x 4 x 4 |
|
''' |
|
device = p.device |
|
assert (transform.shape[1:] == (4, 4) and p.shape[-1] == 3 and p.shape[0] == transform.shape[0]) |
|
|
|
|
|
pcl_hom = torch.cat([p, torch.ones(p.shape[0], p.shape[1], 1).to(device)], |
|
dim=-1).transpose(2, 1) |
|
|
|
|
|
pcl_hom_transformed = transform @ pcl_hom |
|
|
|
|
|
pcl_out = pcl_hom_transformed[:, :3].transpose(2, 1) |
|
return pcl_out |
|
|
|
|
|
def get_tensor_values( |
|
tensor, p, grid_sample=True, mode='nearest', with_mask=False, squeeze_channel_dim=False |
|
): |
|
''' |
|
Returns values from tensor at given location p. |
|
|
|
Args: |
|
tensor (tensor): tensor of size B x C x H x W |
|
p (tensor): position values scaled between [-1, 1] and |
|
of size B x N x 2 |
|
grid_sample (boolean): whether to use grid sampling |
|
mode (string): what mode to perform grid sampling in |
|
with_mask (bool): whether to return the mask for invalid values |
|
squeeze_channel_dim (bool): whether to squeeze the channel dimension |
|
(only applicable to 1D data) |
|
''' |
|
p = to_pytorch(p) |
|
tensor, is_numpy = to_pytorch(tensor, True) |
|
batch_size, _, h, w = tensor.shape |
|
|
|
if grid_sample: |
|
p = p.unsqueeze(1) |
|
values = torch.nn.functional.grid_sample(tensor, p, mode=mode) |
|
values = values.squeeze(2) |
|
values = values.permute(0, 2, 1) |
|
else: |
|
p[:, :, 0] = (p[:, :, 0] + 1) * (w) / 2 |
|
p[:, :, 1] = (p[:, :, 1] + 1) * (h) / 2 |
|
p = p.long() |
|
values = tensor[torch.arange(batch_size).unsqueeze(-1), :, p[:, :, 1], p[:, :, 0]] |
|
|
|
if with_mask: |
|
mask = get_mask(values) |
|
if squeeze_channel_dim: |
|
mask = mask.squeeze(-1) |
|
if is_numpy: |
|
mask = mask.numpy() |
|
|
|
if squeeze_channel_dim: |
|
values = values.squeeze(-1) |
|
|
|
if is_numpy: |
|
values = values.numpy() |
|
|
|
if with_mask: |
|
return values, mask |
|
return values |
|
|
|
|
|
def transform_to_world(pixels, depth, camera_mat, world_mat, scale_mat, invert=True): |
|
''' Transforms pixel positions p with given depth value d to world coordinates. |
|
|
|
Args: |
|
pixels (tensor): pixel tensor of size B x N x 2 |
|
depth (tensor): depth tensor of size B x N x 1 |
|
camera_mat (tensor): camera matrix |
|
world_mat (tensor): world matrix |
|
scale_mat (tensor): scale matrix |
|
invert (bool): whether to invert matrices (default: true) |
|
''' |
|
assert (pixels.shape[-1] == 2) |
|
|
|
|
|
pixels, is_numpy = to_pytorch(pixels, True) |
|
depth = to_pytorch(depth) |
|
camera_mat = to_pytorch(camera_mat) |
|
world_mat = to_pytorch(world_mat) |
|
scale_mat = to_pytorch(scale_mat) |
|
|
|
|
|
if invert: |
|
camera_mat = torch.inverse(camera_mat) |
|
world_mat = torch.inverse(world_mat) |
|
scale_mat = torch.inverse(scale_mat) |
|
|
|
|
|
pixels = pixels.permute(0, 2, 1) |
|
pixels = torch.cat([pixels, torch.ones_like(pixels)], dim=1) |
|
|
|
|
|
pixels[:, :3] = pixels[:, :3] * depth.permute(0, 2, 1) |
|
|
|
|
|
p_world = scale_mat @ world_mat @ camera_mat @ pixels |
|
|
|
|
|
p_world = p_world[:, :3].permute(0, 2, 1) |
|
|
|
if is_numpy: |
|
p_world = p_world.numpy() |
|
return p_world |
|
|
|
|
|
def transform_to_camera_space(p_world, camera_mat, world_mat, scale_mat): |
|
''' Transforms world points to camera space. |
|
Args: |
|
p_world (tensor): world points tensor of size B x N x 3 |
|
camera_mat (tensor): camera matrix |
|
world_mat (tensor): world matrix |
|
scale_mat (tensor): scale matrix |
|
''' |
|
batch_size, n_p, _ = p_world.shape |
|
device = p_world.device |
|
|
|
|
|
p_world = torch.cat([p_world, torch.ones(batch_size, n_p, 1).to(device)], |
|
dim=-1).permute(0, 2, 1) |
|
|
|
|
|
p_cam = camera_mat @ world_mat @ scale_mat @ p_world |
|
|
|
|
|
p_cam = p_cam[:, :3].permute(0, 2, 1) |
|
return p_cam |
|
|
|
|
|
def origin_to_world(n_points, camera_mat, world_mat, scale_mat, invert=True): |
|
''' Transforms origin (camera location) to world coordinates. |
|
|
|
Args: |
|
n_points (int): how often the transformed origin is repeated in the |
|
form (batch_size, n_points, 3) |
|
camera_mat (tensor): camera matrix |
|
world_mat (tensor): world matrix |
|
scale_mat (tensor): scale matrix |
|
invert (bool): whether to invert the matrices (default: true) |
|
''' |
|
batch_size = camera_mat.shape[0] |
|
device = camera_mat.device |
|
|
|
|
|
p = torch.zeros(batch_size, 4, n_points).to(device) |
|
p[:, -1] = 1. |
|
|
|
|
|
if invert: |
|
camera_mat = torch.inverse(camera_mat) |
|
world_mat = torch.inverse(world_mat) |
|
scale_mat = torch.inverse(scale_mat) |
|
|
|
|
|
p_world = scale_mat @ world_mat @ camera_mat @ p |
|
|
|
|
|
p_world = p_world[:, :3].permute(0, 2, 1) |
|
return p_world |
|
|
|
|
|
def image_points_to_world(image_points, camera_mat, world_mat, scale_mat, invert=True): |
|
''' Transforms points on image plane to world coordinates. |
|
|
|
In contrast to transform_to_world, no depth value is needed as points on |
|
the image plane have a fixed depth of 1. |
|
|
|
Args: |
|
image_points (tensor): image points tensor of size B x N x 2 |
|
camera_mat (tensor): camera matrix |
|
world_mat (tensor): world matrix |
|
scale_mat (tensor): scale matrix |
|
invert (bool): whether to invert matrices (default: true) |
|
''' |
|
batch_size, n_pts, dim = image_points.shape |
|
assert (dim == 2) |
|
device = image_points.device |
|
|
|
d_image = torch.ones(batch_size, n_pts, 1).to(device) |
|
return transform_to_world( |
|
image_points, d_image, camera_mat, world_mat, scale_mat, invert=invert |
|
) |
|
|
|
|
|
def check_weights(params): |
|
''' Checks weights for illegal values. |
|
|
|
Args: |
|
params (tensor): parameter tensor |
|
''' |
|
for k, v in params.items(): |
|
if torch.isnan(v).any(): |
|
logger_py.warn('NaN Values detected in model weight %s.' % k) |
|
|
|
|
|
def check_tensor(tensor, tensorname='', input_tensor=None): |
|
''' Checks tensor for illegal values. |
|
|
|
Args: |
|
tensor (tensor): tensor |
|
tensorname (string): name of tensor |
|
input_tensor (tensor): previous input |
|
''' |
|
if torch.isnan(tensor).any(): |
|
logger_py.warn('Tensor %s contains nan values.' % tensorname) |
|
if input_tensor is not None: |
|
logger_py.warn(f'Input was: {input_tensor}') |
|
|
|
|
|
def get_prob_from_logits(logits): |
|
''' Returns probabilities for logits |
|
|
|
Args: |
|
logits (tensor): logits |
|
''' |
|
odds = np.exp(logits) |
|
probs = odds / (1 + odds) |
|
return probs |
|
|
|
|
|
def get_logits_from_prob(probs, eps=1e-4): |
|
''' Returns logits for probabilities. |
|
|
|
Args: |
|
probs (tensor): probability tensor |
|
eps (float): epsilon value for numerical stability |
|
''' |
|
probs = np.clip(probs, a_min=eps, a_max=1 - eps) |
|
logits = np.log(probs / (1 - probs)) |
|
return logits |
|
|
|
|
|
def chamfer_distance(points1, points2, use_kdtree=True, give_id=False): |
|
''' Returns the chamfer distance for the sets of points. |
|
|
|
Args: |
|
points1 (numpy array): first point set |
|
points2 (numpy array): second point set |
|
use_kdtree (bool): whether to use a kdtree |
|
give_id (bool): whether to return the IDs of nearest points |
|
''' |
|
if use_kdtree: |
|
return chamfer_distance_kdtree(points1, points2, give_id=give_id) |
|
else: |
|
return chamfer_distance_naive(points1, points2) |
|
|
|
|
|
def chamfer_distance_naive(points1, points2): |
|
''' Naive implementation of the Chamfer distance. |
|
|
|
Args: |
|
points1 (numpy array): first point set |
|
points2 (numpy array): second point set |
|
''' |
|
assert (points1.size() == points2.size()) |
|
batch_size, T, _ = points1.size() |
|
|
|
points1 = points1.view(batch_size, T, 1, 3) |
|
points2 = points2.view(batch_size, 1, T, 3) |
|
|
|
distances = (points1 - points2).pow(2).sum(-1) |
|
|
|
chamfer1 = distances.min(dim=1)[0].mean(dim=1) |
|
chamfer2 = distances.min(dim=2)[0].mean(dim=1) |
|
|
|
chamfer = chamfer1 + chamfer2 |
|
return chamfer |
|
|
|
|
|
def chamfer_distance_kdtree(points1, points2, give_id=False): |
|
''' KD-tree based implementation of the Chamfer distance. |
|
|
|
Args: |
|
points1 (numpy array): first point set |
|
points2 (numpy array): second point set |
|
give_id (bool): whether to return the IDs of the nearest points |
|
''' |
|
|
|
batch_size = points1.size(0) |
|
|
|
|
|
points1_np = points1.detach().cpu().numpy() |
|
points2_np = points2.detach().cpu().numpy() |
|
|
|
|
|
idx_nn_12, _ = get_nearest_neighbors_indices_batch(points1_np, points2_np) |
|
idx_nn_12 = torch.LongTensor(idx_nn_12).to(points1.device) |
|
|
|
idx_nn_12_expand = idx_nn_12.view(batch_size, -1, 1).expand_as(points1) |
|
|
|
|
|
idx_nn_21, _ = get_nearest_neighbors_indices_batch(points2_np, points1_np) |
|
idx_nn_21 = torch.LongTensor(idx_nn_21).to(points1.device) |
|
|
|
idx_nn_21_expand = idx_nn_21.view(batch_size, -1, 1).expand_as(points2) |
|
|
|
|
|
|
|
points_12 = torch.gather(points2, dim=1, index=idx_nn_12_expand) |
|
|
|
|
|
|
|
points_21 = torch.gather(points1, dim=1, index=idx_nn_21_expand) |
|
|
|
|
|
chamfer1 = (points1 - points_12).pow(2).sum(2).mean(1) |
|
chamfer2 = (points2 - points_21).pow(2).sum(2).mean(1) |
|
|
|
|
|
chamfer = chamfer1 + chamfer2 |
|
|
|
|
|
if give_id: |
|
return chamfer1, chamfer2, idx_nn_12, idx_nn_21 |
|
|
|
return chamfer |
|
|
|
|
|
def get_nearest_neighbors_indices_batch(points_src, points_tgt, k=1): |
|
''' Returns the nearest neighbors for point sets batchwise. |
|
|
|
Args: |
|
points_src (numpy array): source points |
|
points_tgt (numpy array): target points |
|
k (int): number of nearest neighbors to return |
|
''' |
|
indices = [] |
|
distances = [] |
|
|
|
for (p1, p2) in zip(points_src, points_tgt): |
|
kdtree = KDTree(p2) |
|
dist, idx = kdtree.query(p1, k=k) |
|
indices.append(idx) |
|
distances.append(dist) |
|
|
|
return indices, distances |
|
|
|
|
|
def normalize_imagenet(x): |
|
''' Normalize input images according to ImageNet standards. |
|
|
|
Args: |
|
x (tensor): input images |
|
''' |
|
x = x.clone() |
|
x[:, 0] = (x[:, 0] - 0.485) / 0.229 |
|
x[:, 1] = (x[:, 1] - 0.456) / 0.224 |
|
x[:, 2] = (x[:, 2] - 0.406) / 0.225 |
|
return x |
|
|
|
|
|
def make_3d_grid(bb_min, bb_max, shape): |
|
''' Makes a 3D grid. |
|
|
|
Args: |
|
bb_min (tuple): bounding box minimum |
|
bb_max (tuple): bounding box maximum |
|
shape (tuple): output shape |
|
''' |
|
size = shape[0] * shape[1] * shape[2] |
|
|
|
pxs = torch.linspace(bb_min[0], bb_max[0], shape[0]) |
|
pys = torch.linspace(bb_min[1], bb_max[1], shape[1]) |
|
pzs = torch.linspace(bb_min[2], bb_max[2], shape[2]) |
|
|
|
pxs = pxs.view(-1, 1, 1).expand(*shape).contiguous().view(size) |
|
pys = pys.view(1, -1, 1).expand(*shape).contiguous().view(size) |
|
pzs = pzs.view(1, 1, -1).expand(*shape).contiguous().view(size) |
|
p = torch.stack([pxs, pys, pzs], dim=1) |
|
|
|
return p |
|
|
|
|
|
def get_occupancy_loss_points( |
|
pixels, |
|
camera_mat, |
|
world_mat, |
|
scale_mat, |
|
depth_image=None, |
|
use_cube_intersection=True, |
|
occupancy_random_normal=False, |
|
depth_range=[0, 2.4] |
|
): |
|
''' Returns 3D points for occupancy loss. |
|
|
|
Args: |
|
pixels (tensor): sampled pixels in range [-1, 1] |
|
camera_mat (tensor): camera matrix |
|
world_mat (tensor): world matrix |
|
scale_mat (tensor): scale matrix |
|
depth_image tensor): if not None, these depth values are used for |
|
initialization (e.g. depth or visual hull depth) |
|
use_cube_intersection (bool): whether to check unit cube intersection |
|
occupancy_random_normal (bool): whether to sample from a Normal |
|
distribution instead of a uniform one |
|
depth_range (float): depth range; important when no cube |
|
intersection is used |
|
''' |
|
device = pixels.device |
|
batch_size, n_points, _ = pixels.shape |
|
|
|
if use_cube_intersection: |
|
_, d_cube_intersection, mask_cube = \ |
|
intersect_camera_rays_with_unit_cube( |
|
pixels, camera_mat, world_mat, scale_mat, padding=0., |
|
use_ray_length_as_depth=False) |
|
d_cube = d_cube_intersection[mask_cube] |
|
|
|
d_occupancy = torch.rand(batch_size, n_points).to(device) * depth_range[1] |
|
|
|
if use_cube_intersection: |
|
d_occupancy[mask_cube] = d_cube[:, 0] + \ |
|
torch.rand(d_cube.shape[0]).to( |
|
device) * (d_cube[:, 1] - d_cube[:, 0]) |
|
if occupancy_random_normal: |
|
d_occupancy = torch.randn(batch_size, n_points).to(device) \ |
|
* (depth_range[1] / 8) + depth_range[1] / 2 |
|
if use_cube_intersection: |
|
mean_cube = d_cube.sum(-1) / 2 |
|
std_cube = (d_cube[:, 1] - d_cube[:, 0]) / 8 |
|
d_occupancy[mask_cube] = mean_cube + \ |
|
torch.randn(mean_cube.shape[0]).to(device) * std_cube |
|
|
|
if depth_image is not None: |
|
depth_gt, mask_gt_depth = get_tensor_values( |
|
depth_image, pixels, squeeze_channel_dim=True, with_mask=True |
|
) |
|
d_occupancy[mask_gt_depth] = depth_gt[mask_gt_depth] |
|
|
|
p_occupancy = transform_to_world( |
|
pixels, d_occupancy.unsqueeze(-1), camera_mat, world_mat, scale_mat |
|
) |
|
return p_occupancy |
|
|
|
|
|
def get_freespace_loss_points( |
|
pixels, camera_mat, world_mat, scale_mat, use_cube_intersection=True, depth_range=[0, 2.4] |
|
): |
|
''' Returns 3D points for freespace loss. |
|
|
|
Args: |
|
pixels (tensor): sampled pixels in range [-1, 1] |
|
camera_mat (tensor): camera matrix |
|
world_mat (tensor): world matrix |
|
scale_mat (tensor): scale matrix |
|
use_cube_intersection (bool): whether to check unit cube intersection |
|
depth_range (float): depth range; important when no cube |
|
intersection is used |
|
''' |
|
device = pixels.device |
|
batch_size, n_points, _ = pixels.shape |
|
|
|
d_freespace = torch.rand(batch_size, n_points).to(device) * \ |
|
depth_range[1] |
|
|
|
if use_cube_intersection: |
|
_, d_cube_intersection, mask_cube = \ |
|
intersect_camera_rays_with_unit_cube( |
|
pixels, camera_mat, world_mat, scale_mat, |
|
use_ray_length_as_depth=False) |
|
d_cube = d_cube_intersection[mask_cube] |
|
d_freespace[mask_cube] = d_cube[:, 0] + \ |
|
torch.rand(d_cube.shape[0]).to( |
|
device) * (d_cube[:, 1] - d_cube[:, 0]) |
|
|
|
p_freespace = transform_to_world( |
|
pixels, d_freespace.unsqueeze(-1), camera_mat, world_mat, scale_mat |
|
) |
|
return p_freespace |
|
|
|
|
|
def normalize_tensor(tensor, min_norm=1e-5, feat_dim=-1): |
|
''' Normalizes the tensor. |
|
|
|
Args: |
|
tensor (tensor): tensor |
|
min_norm (float): minimum norm for numerical stability |
|
feat_dim (int): feature dimension in tensor (default: -1) |
|
''' |
|
norm_tensor = torch.clamp(torch.norm(tensor, dim=feat_dim, keepdim=True), min=min_norm) |
|
normed_tensor = tensor / norm_tensor |
|
return normed_tensor |
|
|