|
""" |
|
Parts of the code are adapted from https://github.com/akanazawa/hmr |
|
""" |
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
import numpy as np |
|
import torch |
|
|
|
|
|
def compute_similarity_transform(S1, S2): |
|
""" |
|
Computes a similarity transform (sR, t) that takes |
|
a set of 3D points S1 (3 x N) closest to a set of 3D points S2, |
|
where R is an 3x3 rotation matrix, t 3x1 translation, s scale. |
|
i.e. solves the orthogonal Procrutes problem. |
|
""" |
|
transposed = False |
|
if S1.shape[0] != 3 and S1.shape[0] != 2: |
|
S1 = S1.T |
|
S2 = S2.T |
|
transposed = True |
|
assert (S2.shape[1] == S1.shape[1]) |
|
|
|
|
|
mu1 = S1.mean(axis=1, keepdims=True) |
|
mu2 = S2.mean(axis=1, keepdims=True) |
|
X1 = S1 - mu1 |
|
X2 = S2 - mu2 |
|
|
|
|
|
var1 = np.sum(X1**2) |
|
|
|
|
|
K = X1.dot(X2.T) |
|
|
|
|
|
|
|
U, s, Vh = np.linalg.svd(K) |
|
V = Vh.T |
|
|
|
Z = np.eye(U.shape[0]) |
|
Z[-1, -1] *= np.sign(np.linalg.det(U.dot(V.T))) |
|
|
|
R = V.dot(Z.dot(U.T)) |
|
|
|
|
|
scale = np.trace(R.dot(K)) / var1 |
|
|
|
|
|
t = mu2 - scale * (R.dot(mu1)) |
|
|
|
|
|
S1_hat = scale * R.dot(S1) + t |
|
|
|
if transposed: |
|
S1_hat = S1_hat.T |
|
|
|
return S1_hat |
|
|
|
|
|
def compute_similarity_transform_batch(S1, S2): |
|
"""Batched version of compute_similarity_transform.""" |
|
S1_hat = np.zeros_like(S1) |
|
for i in range(S1.shape[0]): |
|
S1_hat[i] = compute_similarity_transform(S1[i], S2[i]) |
|
return S1_hat |
|
|
|
|
|
def reconstruction_error(S1, S2, reduction='mean'): |
|
"""Do Procrustes alignment and compute reconstruction error.""" |
|
S1_hat = compute_similarity_transform_batch(S1, S2) |
|
re = np.sqrt(((S1_hat - S2)**2).sum(axis=-1)).mean(axis=-1) |
|
if reduction == 'mean': |
|
re = re.mean() |
|
elif reduction == 'sum': |
|
re = re.sum() |
|
return re, S1_hat |
|
|
|
|
|
|
|
def axis_angle_add(theta, roll_axis, alpha): |
|
"""Composition of two axis-angle rotations (PyTorch version) |
|
Args: |
|
theta: N x 3 |
|
roll_axis: N x 3 |
|
alph: N x 1 |
|
Returns: |
|
equivalent axis-angle of the composition |
|
""" |
|
alpha = alpha / 2. |
|
|
|
l2norm = torch.norm(theta + 1e-8, p=2, dim=1) |
|
angle = torch.unsqueeze(l2norm, -1) |
|
|
|
normalized = torch.div(theta, angle) |
|
angle = angle * 0.5 |
|
b_cos = torch.cos(angle).cpu() |
|
b_sin = torch.sin(angle).cpu() |
|
|
|
a_cos = torch.cos(alpha) |
|
a_sin = torch.sin(alpha) |
|
|
|
dot_mm = torch.sum(normalized * roll_axis, dim=1, keepdim=True) |
|
cross_mm = torch.zeros_like(normalized) |
|
cross_mm[:, 0] = roll_axis[:, 1] * normalized[:, 2] - roll_axis[:, 2] * normalized[:, 1] |
|
cross_mm[:, 1] = roll_axis[:, 2] * normalized[:, 0] - roll_axis[:, 0] * normalized[:, 2] |
|
cross_mm[:, 2] = roll_axis[:, 0] * normalized[:, 1] - roll_axis[:, 1] * normalized[:, 0] |
|
|
|
c_cos = a_cos * b_cos - a_sin * b_sin * dot_mm |
|
c_sin_n = a_sin * b_cos * roll_axis + a_cos * b_sin * normalized + a_sin * b_sin * cross_mm |
|
|
|
c_angle = 2 * torch.acos(c_cos) |
|
c_sin = torch.sin(c_angle * 0.5) |
|
c_n = (c_angle / c_sin) * c_sin_n |
|
|
|
return c_n |
|
|
|
|
|
def axis_angle_add_np(theta, roll_axis, alpha): |
|
"""Composition of two axis-angle rotations (NumPy version) |
|
Args: |
|
theta: N x 3 |
|
roll_axis: N x 3 |
|
alph: N x 1 |
|
Returns: |
|
equivalent axis-angle of the composition |
|
""" |
|
alpha = alpha / 2. |
|
|
|
angle = np.linalg.norm(theta + 1e-8, ord=2, axis=1, keepdims=True) |
|
normalized = np.divide(theta, angle) |
|
angle = angle * 0.5 |
|
|
|
b_cos = np.cos(angle) |
|
b_sin = np.sin(angle) |
|
a_cos = np.cos(alpha) |
|
a_sin = np.sin(alpha) |
|
|
|
dot_mm = np.sum(normalized * roll_axis, axis=1, keepdims=True) |
|
cross_mm = np.zeros_like(normalized) |
|
cross_mm[:, 0] = roll_axis[:, 1] * normalized[:, 2] - roll_axis[:, 2] * normalized[:, 1] |
|
cross_mm[:, 1] = roll_axis[:, 2] * normalized[:, 0] - roll_axis[:, 0] * normalized[:, 2] |
|
cross_mm[:, 2] = roll_axis[:, 0] * normalized[:, 1] - roll_axis[:, 1] * normalized[:, 0] |
|
|
|
c_cos = a_cos * b_cos - a_sin * b_sin * dot_mm |
|
c_sin_n = a_sin * b_cos * roll_axis + a_cos * b_sin * normalized + a_sin * b_sin * cross_mm |
|
c_angle = 2 * np.arccos(c_cos) |
|
c_sin = np.sin(c_angle * 0.5) |
|
c_n = (c_angle / c_sin) * c_sin_n |
|
|
|
return c_n |
|
|