|
|
|
|
|
|
|
import numpy as np |
|
import scipy.signal as signal |
|
from scipy.ndimage.filters import gaussian_filter1d |
|
|
|
|
|
def get_smooth_bbox_params(kps, vis_thresh=2, kernel_size=11, sigma=3): |
|
""" |
|
Computes smooth bounding box parameters from keypoints: |
|
1. Computes bbox by rescaling the person to be around 150 px. |
|
2. Linearly interpolates bbox params for missing annotations. |
|
3. Median filtering |
|
4. Gaussian filtering. |
|
|
|
Recommended thresholds: |
|
* detect-and-track: 0 |
|
* 3DPW: 0.1 |
|
|
|
Args: |
|
kps (list): List of kps (Nx3) or None. |
|
vis_thresh (float): Threshold for visibility. |
|
kernel_size (int): Kernel size for median filtering (must be odd). |
|
sigma (float): Sigma for gaussian smoothing. |
|
|
|
Returns: |
|
Smooth bbox params [cx, cy, scale], start index, end index |
|
""" |
|
bbox_params, start, end = get_all_bbox_params(kps, vis_thresh) |
|
smoothed = smooth_bbox_params(bbox_params, kernel_size, sigma) |
|
smoothed = np.vstack((np.zeros((start, 3)), smoothed)) |
|
return smoothed, start, end |
|
|
|
|
|
def kp_to_bbox_param(kp, vis_thresh): |
|
""" |
|
Finds the bounding box parameters from the 2D keypoints. |
|
|
|
Args: |
|
kp (Kx3): 2D Keypoints. |
|
vis_thresh (float): Threshold for visibility. |
|
|
|
Returns: |
|
[center_x, center_y, scale] |
|
""" |
|
if kp is None: |
|
return |
|
vis = kp[:, 2] > vis_thresh |
|
if not np.any(vis): |
|
return |
|
min_pt = np.min(kp[vis, :2], axis=0) |
|
max_pt = np.max(kp[vis, :2], axis=0) |
|
person_height = np.linalg.norm(max_pt - min_pt) |
|
if person_height < 0.5: |
|
return |
|
center = (min_pt + max_pt) / 2. |
|
scale = 150. / person_height |
|
return np.append(center, scale) |
|
|
|
|
|
def get_all_bbox_params(kps, vis_thresh=2): |
|
""" |
|
Finds bounding box parameters for all keypoints. |
|
|
|
Look for sequences in the middle with no predictions and linearly |
|
interpolate the bbox params for those |
|
|
|
Args: |
|
kps (list): List of kps (Kx3) or None. |
|
vis_thresh (float): Threshold for visibility. |
|
|
|
Returns: |
|
bbox_params, start_index (incl), end_index (excl) |
|
""" |
|
|
|
num_to_interpolate = 0 |
|
start_index = -1 |
|
bbox_params = np.empty(shape=(0, 3), dtype=np.float32) |
|
|
|
for i, kp in enumerate(kps): |
|
bbox_param = kp_to_bbox_param(kp, vis_thresh=vis_thresh) |
|
if bbox_param is None: |
|
num_to_interpolate += 1 |
|
continue |
|
|
|
if start_index == -1: |
|
|
|
start_index = i |
|
num_to_interpolate = 0 |
|
|
|
if num_to_interpolate > 0: |
|
|
|
previous = bbox_params[-1] |
|
|
|
interpolated = np.array( |
|
[ |
|
np.linspace(prev, curr, num_to_interpolate + 2) |
|
for prev, curr in zip(previous, bbox_param) |
|
] |
|
) |
|
bbox_params = np.vstack((bbox_params, interpolated.T[1:-1])) |
|
num_to_interpolate = 0 |
|
bbox_params = np.vstack((bbox_params, bbox_param)) |
|
|
|
return bbox_params, start_index, i - num_to_interpolate + 1 |
|
|
|
|
|
def smooth_bbox_params(bbox_params, kernel_size=11, sigma=8): |
|
""" |
|
Applies median filtering and then gaussian filtering to bounding box |
|
parameters. |
|
|
|
Args: |
|
bbox_params (Nx3): [cx, cy, scale]. |
|
kernel_size (int): Kernel size for median filtering (must be odd). |
|
sigma (float): Sigma for gaussian smoothing. |
|
|
|
Returns: |
|
Smoothed bounding box parameters (Nx3). |
|
""" |
|
smoothed = np.array([signal.medfilt(param, kernel_size) for param in bbox_params.T]).T |
|
return np.array([gaussian_filter1d(traj, sigma) for traj in smoothed.T]).T |
|
|