|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
from __future__ import unicode_literals |
|
|
|
import cv2 |
|
import numpy as np |
|
import os |
|
import pycocotools.mask as mask_util |
|
import math |
|
import torchvision |
|
|
|
from .colormap import colormap |
|
from .keypoints import get_keypoints |
|
from .imutils import normalize_2d_kp |
|
|
|
|
|
import matplotlib |
|
|
|
matplotlib.use('Agg') |
|
import matplotlib.pyplot as plt |
|
from matplotlib.patches import Polygon |
|
from mpl_toolkits.mplot3d import Axes3D |
|
from skimage.transform import resize |
|
|
|
plt.rcParams['pdf.fonttype'] = 42 |
|
|
|
_GRAY = (218, 227, 218) |
|
_GREEN = (18, 127, 15) |
|
_WHITE = (255, 255, 255) |
|
|
|
|
|
def get_colors(): |
|
colors = { |
|
'pink': np.array([197, 27, 125]), |
|
'light_pink': np.array([233, 163, 201]), |
|
'light_green': np.array([161, 215, 106]), |
|
'green': np.array([77, 146, 33]), |
|
'red': np.array([215, 48, 39]), |
|
'light_red': np.array([252, 146, 114]), |
|
'light_orange': np.array([252, 141, 89]), |
|
'purple': np.array([118, 42, 131]), |
|
'light_purple': np.array([175, 141, 195]), |
|
'light_blue': np.array([145, 191, 219]), |
|
'blue': np.array([69, 117, 180]), |
|
'gray': np.array([130, 130, 130]), |
|
'white': np.array([255, 255, 255]), |
|
} |
|
return colors |
|
|
|
|
|
def kp_connections(keypoints): |
|
kp_lines = [ |
|
[keypoints.index('left_eye'), keypoints.index('right_eye')], |
|
[keypoints.index('left_eye'), keypoints.index('nose')], |
|
[keypoints.index('right_eye'), keypoints.index('nose')], |
|
[keypoints.index('right_eye'), keypoints.index('right_ear')], |
|
[keypoints.index('left_eye'), keypoints.index('left_ear')], |
|
[keypoints.index('right_shoulder'), |
|
keypoints.index('right_elbow')], |
|
[keypoints.index('right_elbow'), |
|
keypoints.index('right_wrist')], |
|
[keypoints.index('left_shoulder'), |
|
keypoints.index('left_elbow')], |
|
[keypoints.index('left_elbow'), |
|
keypoints.index('left_wrist')], |
|
[keypoints.index('right_hip'), keypoints.index('right_knee')], |
|
[keypoints.index('right_knee'), |
|
keypoints.index('right_ankle')], |
|
[keypoints.index('left_hip'), keypoints.index('left_knee')], |
|
[keypoints.index('left_knee'), keypoints.index('left_ankle')], |
|
[keypoints.index('right_shoulder'), |
|
keypoints.index('left_shoulder')], |
|
[keypoints.index('right_hip'), keypoints.index('left_hip')], |
|
] |
|
return kp_lines |
|
|
|
|
|
def convert_from_cls_format(cls_boxes, cls_segms, cls_keyps): |
|
"""Convert from the class boxes/segms/keyps format generated by the testing |
|
code. |
|
""" |
|
box_list = [b for b in cls_boxes if len(b) > 0] |
|
if len(box_list) > 0: |
|
boxes = np.concatenate(box_list) |
|
else: |
|
boxes = None |
|
if cls_segms is not None: |
|
segms = [s for slist in cls_segms for s in slist] |
|
else: |
|
segms = None |
|
if cls_keyps is not None: |
|
keyps = [k for klist in cls_keyps for k in klist] |
|
else: |
|
keyps = None |
|
classes = [] |
|
for j in range(len(cls_boxes)): |
|
classes += [j] * len(cls_boxes[j]) |
|
return boxes, segms, keyps, classes |
|
|
|
|
|
def vis_bbox_opencv(img, bbox, thick=1): |
|
"""Visualizes a bounding box.""" |
|
(x0, y0, w, h) = bbox |
|
x1, y1 = int(x0 + w), int(y0 + h) |
|
x0, y0 = int(x0), int(y0) |
|
cv2.rectangle(img, (x0, y0), (x1, y1), _GREEN, thickness=thick) |
|
return img |
|
|
|
|
|
def get_class_string(class_index, score, dataset): |
|
class_text = dataset.classes[class_index] if dataset is not None else \ |
|
'id{:d}'.format(class_index) |
|
return class_text + ' {:0.2f}'.format(score).lstrip('0') |
|
|
|
|
|
def vis_one_image( |
|
im, |
|
im_name, |
|
output_dir, |
|
boxes, |
|
segms=None, |
|
keypoints=None, |
|
body_uv=None, |
|
thresh=0.9, |
|
kp_thresh=2, |
|
dpi=200, |
|
box_alpha=0.0, |
|
dataset=None, |
|
show_class=False, |
|
ext='pdf' |
|
): |
|
"""Visual debugging of detections.""" |
|
if not os.path.exists(output_dir): |
|
os.makedirs(output_dir) |
|
|
|
if isinstance(boxes, list): |
|
boxes, segms, keypoints, classes = convert_from_cls_format(boxes, segms, keypoints) |
|
|
|
if boxes is None or boxes.shape[0] == 0 or max(boxes[:, 4]) < thresh: |
|
return |
|
|
|
if segms is not None: |
|
masks = mask_util.decode(segms) |
|
|
|
color_list = colormap(rgb=True) / 255 |
|
|
|
dataset_keypoints, _ = get_keypoints() |
|
|
|
kp_lines = kp_connections(dataset_keypoints) |
|
cmap = plt.get_cmap('rainbow') |
|
colors = [cmap(i) for i in np.linspace(0, 1, len(kp_lines) + 2)] |
|
|
|
fig = plt.figure(frameon=False) |
|
fig.set_size_inches(im.shape[1] / dpi, im.shape[0] / dpi) |
|
ax = plt.Axes(fig, [0., 0., 1., 1.]) |
|
ax.axis('off') |
|
fig.add_axes(ax) |
|
ax.imshow(im) |
|
|
|
|
|
areas = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1]) |
|
sorted_inds = np.argsort(-areas) |
|
|
|
mask_color_id = 0 |
|
for i in sorted_inds: |
|
bbox = boxes[i, :4] |
|
score = boxes[i, -1] |
|
if score < thresh: |
|
continue |
|
|
|
print(dataset.classes[classes[i]], score) |
|
|
|
ax.add_patch( |
|
plt.Rectangle( |
|
(bbox[0], bbox[1]), |
|
bbox[2] - bbox[0], |
|
bbox[3] - bbox[1], |
|
fill=False, |
|
edgecolor='g', |
|
linewidth=0.5, |
|
alpha=box_alpha |
|
) |
|
) |
|
|
|
if show_class: |
|
ax.text( |
|
bbox[0], |
|
bbox[1] - 2, |
|
get_class_string(classes[i], score, dataset), |
|
fontsize=3, |
|
family='serif', |
|
bbox=dict(facecolor='g', alpha=0.4, pad=0, edgecolor='none'), |
|
color='white' |
|
) |
|
|
|
|
|
if segms is not None and len(segms) > i: |
|
img = np.ones(im.shape) |
|
color_mask = color_list[mask_color_id % len(color_list), 0:3] |
|
mask_color_id += 1 |
|
|
|
w_ratio = .4 |
|
for c in range(3): |
|
color_mask[c] = color_mask[c] * (1 - w_ratio) + w_ratio |
|
for c in range(3): |
|
img[:, :, c] = color_mask[c] |
|
e = masks[:, :, i] |
|
|
|
_, contour, hier = cv2.findContours(e.copy(), cv2.RETR_CCOMP, cv2.CHAIN_APPROX_NONE) |
|
|
|
for c in contour: |
|
polygon = Polygon( |
|
c.reshape((-1, 2)), |
|
fill=True, |
|
facecolor=color_mask, |
|
edgecolor='w', |
|
linewidth=1.2, |
|
alpha=0.5 |
|
) |
|
ax.add_patch(polygon) |
|
|
|
|
|
if keypoints is not None and len(keypoints) > i: |
|
kps = keypoints[i] |
|
plt.autoscale(False) |
|
for l in range(len(kp_lines)): |
|
i1 = kp_lines[l][0] |
|
i2 = kp_lines[l][1] |
|
if kps[2, i1] > kp_thresh and kps[2, i2] > kp_thresh: |
|
x = [kps[0, i1], kps[0, i2]] |
|
y = [kps[1, i1], kps[1, i2]] |
|
line = ax.plot(x, y) |
|
plt.setp(line, color=colors[l], linewidth=1.0, alpha=0.7) |
|
if kps[2, i1] > kp_thresh: |
|
ax.plot(kps[0, i1], kps[1, i1], '.', color=colors[l], markersize=3.0, alpha=0.7) |
|
if kps[2, i2] > kp_thresh: |
|
ax.plot(kps[0, i2], kps[1, i2], '.', color=colors[l], markersize=3.0, alpha=0.7) |
|
|
|
|
|
mid_shoulder = ( |
|
kps[:2, dataset_keypoints.index('right_shoulder')] + |
|
kps[:2, dataset_keypoints.index('left_shoulder')] |
|
) / 2.0 |
|
sc_mid_shoulder = np.minimum( |
|
kps[2, dataset_keypoints.index('right_shoulder')], |
|
kps[2, dataset_keypoints.index('left_shoulder')] |
|
) |
|
mid_hip = ( |
|
kps[:2, dataset_keypoints.index('right_hip')] + |
|
kps[:2, dataset_keypoints.index('left_hip')] |
|
) / 2.0 |
|
sc_mid_hip = np.minimum( |
|
kps[2, dataset_keypoints.index('right_hip')], |
|
kps[2, dataset_keypoints.index('left_hip')] |
|
) |
|
if ( |
|
sc_mid_shoulder > kp_thresh and kps[2, dataset_keypoints.index('nose')] > kp_thresh |
|
): |
|
x = [mid_shoulder[0], kps[0, dataset_keypoints.index('nose')]] |
|
y = [mid_shoulder[1], kps[1, dataset_keypoints.index('nose')]] |
|
line = ax.plot(x, y) |
|
plt.setp(line, color=colors[len(kp_lines)], linewidth=1.0, alpha=0.7) |
|
if sc_mid_shoulder > kp_thresh and sc_mid_hip > kp_thresh: |
|
x = [mid_shoulder[0], mid_hip[0]] |
|
y = [mid_shoulder[1], mid_hip[1]] |
|
line = ax.plot(x, y) |
|
plt.setp(line, color=colors[len(kp_lines) + 1], linewidth=1.0, alpha=0.7) |
|
|
|
|
|
|
|
if body_uv is not None and len(body_uv) > 1: |
|
IUV_fields = body_uv[1] |
|
|
|
All_Coords = np.zeros(im.shape) |
|
All_inds = np.zeros([im.shape[0], im.shape[1]]) |
|
K = 26 |
|
|
|
inds = np.argsort(boxes[:, 4]) |
|
|
|
for i, ind in enumerate(inds): |
|
entry = boxes[ind, :] |
|
if entry[4] > 0.65: |
|
entry = entry[0:4].astype(int) |
|
|
|
output = IUV_fields[ind] |
|
|
|
All_Coords_Old = All_Coords[entry[1]:entry[1] + output.shape[1], |
|
entry[0]:entry[0] + output.shape[2], :] |
|
All_Coords_Old[All_Coords_Old == 0] = output.transpose([1, 2, |
|
0])[All_Coords_Old == 0] |
|
All_Coords[entry[1]:entry[1] + output.shape[1], |
|
entry[0]:entry[0] + output.shape[2], :] = All_Coords_Old |
|
|
|
CurrentMask = (output[0, :, :] > 0).astype(np.float32) |
|
All_inds_old = All_inds[entry[1]:entry[1] + output.shape[1], |
|
entry[0]:entry[0] + output.shape[2]] |
|
All_inds_old[All_inds_old == 0] = CurrentMask[All_inds_old == 0] * i |
|
All_inds[entry[1]:entry[1] + output.shape[1], |
|
entry[0]:entry[0] + output.shape[2]] = All_inds_old |
|
|
|
All_Coords[:, :, 1:3] = 255. * All_Coords[:, :, 1:3] |
|
All_Coords[All_Coords > 255] = 255. |
|
All_Coords = All_Coords.astype(np.uint8) |
|
All_inds = All_inds.astype(np.uint8) |
|
|
|
IUV_SaveName = os.path.basename(im_name).split('.')[0] + '_IUV.png' |
|
INDS_SaveName = os.path.basename(im_name).split('.')[0] + '_INDS.png' |
|
cv2.imwrite(os.path.join(output_dir, '{}'.format(IUV_SaveName)), All_Coords) |
|
cv2.imwrite(os.path.join(output_dir, '{}'.format(INDS_SaveName)), All_inds) |
|
print('IUV written to: ', os.path.join(output_dir, '{}'.format(IUV_SaveName))) |
|
|
|
|
|
|
|
output_name = os.path.basename(im_name) + '.' + ext |
|
fig.savefig(os.path.join(output_dir, '{}'.format(output_name)), dpi=dpi) |
|
plt.close('all') |
|
|
|
|
|
if body_uv is not None and len(body_uv) > 2: |
|
smpl_fields = body_uv[2] |
|
|
|
All_Coords = np.zeros(im.shape) |
|
|
|
K = 26 |
|
|
|
inds = np.argsort(boxes[:, 4]) |
|
|
|
for i, ind in enumerate(inds): |
|
entry = boxes[ind, :] |
|
if entry[4] > 0.75: |
|
entry = entry[0:4].astype(int) |
|
center_roi = [(entry[2] + entry[0]) / 2., (entry[3] + entry[1]) / 2.] |
|
|
|
output, center_out = smpl_fields[ind] |
|
|
|
x1_img = max(int(center_roi[0] - center_out[0]), 0) |
|
y1_img = max(int(center_roi[1] - center_out[1]), 0) |
|
|
|
x2_img = min(int(center_roi[0] - center_out[0]) + output.shape[2], im.shape[1]) |
|
y2_img = min(int(center_roi[1] - center_out[1]) + output.shape[1], im.shape[0]) |
|
|
|
All_Coords_Old = All_Coords[y1_img:y2_img, x1_img:x2_img, :] |
|
|
|
x1_out = max(int(center_out[0] - center_roi[0]), 0) |
|
y1_out = max(int(center_out[1] - center_roi[1]), 0) |
|
|
|
x2_out = x1_out + (x2_img - x1_img) |
|
y2_out = y1_out + (y2_img - y1_img) |
|
|
|
output = output[:, y1_out:y2_out, x1_out:x2_out] |
|
|
|
|
|
|
|
All_Coords_Old[All_Coords_Old == 0] = output.transpose([1, 2, |
|
0])[All_Coords_Old == 0] |
|
All_Coords[y1_img:y2_img, x1_img:x2_img, :] = All_Coords_Old |
|
|
|
|
|
|
|
|
|
|
|
|
|
All_Coords = 255. * All_Coords |
|
All_Coords[All_Coords > 255] = 255. |
|
All_Coords = All_Coords.astype(np.uint8) |
|
|
|
image_stacked = im[:, :, ::-1] |
|
image_stacked[All_Coords > 20] = All_Coords[All_Coords > 20] |
|
|
|
|
|
SMPL_SaveName = os.path.basename(im_name).split('.')[0] + '_SMPL.png' |
|
smpl_image_SaveName = os.path.basename(im_name).split('.')[0] + '_SMPLimg.png' |
|
|
|
cv2.imwrite(os.path.join(output_dir, '{}'.format(SMPL_SaveName)), All_Coords) |
|
cv2.imwrite(os.path.join(output_dir, '{}'.format(smpl_image_SaveName)), image_stacked) |
|
|
|
print('SMPL written to: ', os.path.join(output_dir, '{}'.format(SMPL_SaveName))) |
|
|
|
|
|
|
|
output_name = os.path.basename(im_name) + '.' + ext |
|
fig.savefig(os.path.join(output_dir, '{}'.format(output_name)), dpi=dpi) |
|
plt.close('all') |
|
|
|
|
|
def vis_batch_image_with_joints( |
|
batch_image, |
|
batch_joints, |
|
batch_joints_vis, |
|
file_name=None, |
|
nrow=8, |
|
padding=0, |
|
pad_value=1, |
|
add_text=True |
|
): |
|
''' |
|
batch_image: [batch_size, channel, height, width] |
|
batch_joints: [batch_size, num_joints, 3], |
|
batch_joints_vis: [batch_size, num_joints, 1], |
|
} |
|
''' |
|
grid = torchvision.utils.make_grid(batch_image, nrow, padding, True, pad_value=pad_value) |
|
ndarr = grid.mul(255).clamp(0, 255).byte().permute(1, 2, 0).cpu().numpy() |
|
ndarr = ndarr.copy() |
|
|
|
nmaps = batch_image.size(0) |
|
xmaps = min(nrow, nmaps) |
|
ymaps = int(math.ceil(float(nmaps) / xmaps)) |
|
height = int(batch_image.size(2) + padding) |
|
width = int(batch_image.size(3) + padding) |
|
k = 0 |
|
for y in range(ymaps): |
|
for x in range(xmaps): |
|
if k >= nmaps: |
|
break |
|
|
|
joints = batch_joints[k] |
|
joints_vis = batch_joints_vis[k] |
|
|
|
flip = 1 |
|
count = -1 |
|
|
|
for joint, joint_vis in zip(joints, joints_vis): |
|
joint[0] = x * width + padding + joint[0] |
|
joint[1] = y * height + padding + joint[1] |
|
flip *= -1 |
|
count += 1 |
|
if joint_vis[0]: |
|
try: |
|
if flip > 0: |
|
cv2.circle(ndarr, (int(joint[0]), int(joint[1])), 0, [255, 0, 0], -1) |
|
else: |
|
cv2.circle(ndarr, (int(joint[0]), int(joint[1])), 0, [0, 255, 0], -1) |
|
if add_text: |
|
cv2.putText( |
|
ndarr, str(count), (int(joint[0]), int(joint[1])), |
|
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 1 |
|
) |
|
except Exception as e: |
|
print(e) |
|
k = k + 1 |
|
|
|
return ndarr |
|
|
|
|
|
def vis_img_3Djoint(batch_img, joints, pairs=None, joint_group=None): |
|
n_sample = joints.shape[0] |
|
max_show = 2 |
|
if n_sample > max_show: |
|
if batch_img is not None: |
|
batch_img = batch_img[:max_show] |
|
joints = joints[:max_show] |
|
n_sample = max_show |
|
|
|
color = ['#00B0F0', '#00B050', '#DC6464', '#207070', '#BC4484'] |
|
|
|
|
|
|
|
def m_l_r(idx): |
|
|
|
if joint_group is None: |
|
return 1 |
|
|
|
for i in range(len(joint_group)): |
|
if idx in joint_group[i]: |
|
return i |
|
|
|
for i in range(n_sample): |
|
if batch_img is not None: |
|
|
|
ax_img = plt.subplot(2, n_sample, i + 1) |
|
img_np = batch_img[i].cpu().numpy() |
|
img_np = np.transpose(img_np, (1, 2, 0)) |
|
ax_img.imshow(img_np) |
|
ax_img.set_axis_off() |
|
ax_pred = plt.subplot(2, n_sample, n_sample + i + 1, projection='3d') |
|
|
|
else: |
|
ax_pred = plt.subplot(1, n_sample, i + 1, projection='3d') |
|
|
|
plot_kps = joints[i] |
|
if plot_kps.shape[1] > 2: |
|
if joint_group is None: |
|
ax_pred.scatter(plot_kps[:, 2], plot_kps[:, 0], plot_kps[:, 1], s=10, marker='.') |
|
ax_pred.scatter( |
|
plot_kps[0, 2], plot_kps[0, 0], plot_kps[0, 1], s=10, c='g', marker='.' |
|
) |
|
else: |
|
for j in range(len(joint_group)): |
|
ax_pred.scatter( |
|
plot_kps[joint_group[j], 2], |
|
plot_kps[joint_group[j], 0], |
|
plot_kps[joint_group[j], 1], |
|
s=30, |
|
c=color[j], |
|
marker='s' |
|
) |
|
|
|
if pairs is not None: |
|
for p in pairs: |
|
ax_pred.plot( |
|
plot_kps[p, 2], |
|
plot_kps[p, 0], |
|
plot_kps[p, 1], |
|
c=color[m_l_r(p[1])], |
|
linewidth=2 |
|
) |
|
|
|
|
|
|
|
ax_pred.set_aspect('equal') |
|
set_axes_equal(ax_pred) |
|
|
|
ax_pred.xaxis.set_ticks([]) |
|
ax_pred.yaxis.set_ticks([]) |
|
ax_pred.zaxis.set_ticks([]) |
|
|
|
|
|
def vis_img_2Djoint(batch_img, joints, pairs=None, joint_group=None): |
|
n_sample = joints.shape[0] |
|
max_show = 2 |
|
if n_sample > max_show: |
|
if batch_img is not None: |
|
batch_img = batch_img[:max_show] |
|
joints = joints[:max_show] |
|
n_sample = max_show |
|
|
|
color = ['#00B0F0', '#00B050', '#DC6464', '#207070', '#BC4484'] |
|
|
|
|
|
|
|
def m_l_r(idx): |
|
|
|
if joint_group is None: |
|
return 1 |
|
|
|
for i in range(len(joint_group)): |
|
if idx in joint_group[i]: |
|
return i |
|
|
|
for i in range(n_sample): |
|
if batch_img is not None: |
|
|
|
ax_img = plt.subplot(2, n_sample, i + 1) |
|
img_np = batch_img[i].cpu().numpy() |
|
img_np = np.transpose(img_np, (1, 2, 0)) |
|
ax_img.imshow(img_np) |
|
ax_img.set_axis_off() |
|
ax_pred = plt.subplot(2, n_sample, n_sample + i + 1) |
|
|
|
else: |
|
ax_pred = plt.subplot(1, n_sample, i + 1) |
|
|
|
plot_kps = joints[i] |
|
if plot_kps.shape[1] > 1: |
|
if joint_group is None: |
|
ax_pred.scatter(plot_kps[:, 0], plot_kps[:, 1], s=300, c='#00B0F0', marker='.') |
|
|
|
|
|
else: |
|
for j in range(len(joint_group)): |
|
ax_pred.scatter( |
|
plot_kps[joint_group[j], 0], |
|
plot_kps[joint_group[j], 1], |
|
s=100, |
|
c=color[j], |
|
marker='o' |
|
) |
|
|
|
if pairs is not None: |
|
for p in pairs: |
|
ax_pred.plot( |
|
plot_kps[p, 0], |
|
plot_kps[p, 1], |
|
c=color[m_l_r(p[1])], |
|
linestyle=':', |
|
linewidth=3 |
|
) |
|
|
|
ax_pred.set_axis_off() |
|
|
|
ax_pred.set_aspect('equal') |
|
ax_pred.axis('equal') |
|
|
|
|
|
ax_pred.xaxis.set_ticks([]) |
|
ax_pred.yaxis.set_ticks([]) |
|
|
|
|
|
|
|
def draw_skeleton(image, kp_2d, dataset='common', unnormalize=True, thickness=2): |
|
|
|
if unnormalize: |
|
kp_2d[:, :2] = normalize_2d_kp(kp_2d[:, :2], 224, inv=True) |
|
|
|
kp_2d[:, 2] = kp_2d[:, 2] > 0.3 |
|
kp_2d = np.array(kp_2d, dtype=int) |
|
|
|
rcolor = get_colors()['red'].tolist() |
|
pcolor = get_colors()['green'].tolist() |
|
lcolor = get_colors()['blue'].tolist() |
|
|
|
common_lr = [0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0] |
|
for idx, pt in enumerate(kp_2d): |
|
if pt[2] > 0: |
|
if idx % 2 == 0: |
|
color = rcolor |
|
else: |
|
color = pcolor |
|
cv2.circle(image, (pt[0], pt[1]), 4, color, -1) |
|
|
|
|
|
if dataset == 'common' and len(kp_2d) != 15: |
|
return image |
|
|
|
skeleton = eval(f'kp_utils.get_{dataset}_skeleton')() |
|
for i, (j1, j2) in enumerate(skeleton): |
|
if kp_2d[j1, 2] > 0 and kp_2d[j2, 2] > 0: |
|
if dataset == 'common': |
|
color = rcolor if common_lr[i] == 0 else lcolor |
|
else: |
|
color = lcolor if i % 2 == 0 else rcolor |
|
pt1, pt2 = (kp_2d[j1, 0], kp_2d[j1, 1]), (kp_2d[j2, 0], kp_2d[j2, 1]) |
|
cv2.line(image, pt1=pt1, pt2=pt2, color=color, thickness=thickness) |
|
|
|
return image |
|
|
|
|
|
|
|
def set_axes_equal(ax): |
|
'''Make axes of 3D plot have equal scale so that spheres appear as spheres, |
|
cubes as cubes, etc.. This is one possible solution to Matplotlib's |
|
ax.set_aspect('equal') and ax.axis('equal') not working for 3D. |
|
|
|
Input |
|
ax: a matplotlib axis, e.g., as output from plt.gca(). |
|
''' |
|
|
|
x_limits = ax.get_xlim3d() |
|
y_limits = ax.get_ylim3d() |
|
z_limits = ax.get_zlim3d() |
|
|
|
x_range = abs(x_limits[1] - x_limits[0]) |
|
x_middle = np.mean(x_limits) |
|
y_range = abs(y_limits[1] - y_limits[0]) |
|
y_middle = np.mean(y_limits) |
|
z_range = abs(z_limits[1] - z_limits[0]) |
|
z_middle = np.mean(z_limits) |
|
|
|
|
|
|
|
plot_radius = 0.5 * max([x_range, y_range, z_range]) |
|
|
|
ax.set_xlim3d([x_middle - plot_radius, x_middle + plot_radius]) |
|
ax.set_ylim3d([y_middle - plot_radius, y_middle + plot_radius]) |
|
ax.set_zlim3d([z_middle - plot_radius, z_middle + plot_radius]) |
|
|