|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import absolute_import |
|
from __future__ import print_function |
|
from __future__ import division |
|
|
|
from typing import Tuple, List, Optional |
|
import numpy as np |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
|
|
from .utils import rot_mat_to_euler, Tensor |
|
|
|
|
|
def find_dynamic_lmk_idx_and_bcoords( |
|
vertices: Tensor, |
|
pose: Tensor, |
|
dynamic_lmk_faces_idx: Tensor, |
|
dynamic_lmk_b_coords: Tensor, |
|
neck_kin_chain: List[int], |
|
pose2rot: bool = True, |
|
) -> Tuple[Tensor, Tensor]: |
|
''' Compute the faces, barycentric coordinates for the dynamic landmarks |
|
|
|
|
|
To do so, we first compute the rotation of the neck around the y-axis |
|
and then use a pre-computed look-up table to find the faces and the |
|
barycentric coordinates that will be used. |
|
|
|
Special thanks to Soubhik Sanyal (soubhik.sanyal@tuebingen.mpg.de) |
|
for providing the original TensorFlow implementation and for the LUT. |
|
|
|
Parameters |
|
---------- |
|
vertices: torch.tensor BxVx3, dtype = torch.float32 |
|
The tensor of input vertices |
|
pose: torch.tensor Bx(Jx3), dtype = torch.float32 |
|
The current pose of the body model |
|
dynamic_lmk_faces_idx: torch.tensor L, dtype = torch.long |
|
The look-up table from neck rotation to faces |
|
dynamic_lmk_b_coords: torch.tensor Lx3, dtype = torch.float32 |
|
The look-up table from neck rotation to barycentric coordinates |
|
neck_kin_chain: list |
|
A python list that contains the indices of the joints that form the |
|
kinematic chain of the neck. |
|
dtype: torch.dtype, optional |
|
|
|
Returns |
|
------- |
|
dyn_lmk_faces_idx: torch.tensor, dtype = torch.long |
|
A tensor of size BxL that contains the indices of the faces that |
|
will be used to compute the current dynamic landmarks. |
|
dyn_lmk_b_coords: torch.tensor, dtype = torch.float32 |
|
A tensor of size BxL that contains the indices of the faces that |
|
will be used to compute the current dynamic landmarks. |
|
''' |
|
|
|
dtype = vertices.dtype |
|
batch_size = vertices.shape[0] |
|
|
|
if pose2rot: |
|
aa_pose = torch.index_select(pose.view(batch_size, -1, 3), 1, |
|
neck_kin_chain) |
|
rot_mats = batch_rodrigues(aa_pose.view(-1, |
|
3)).view(batch_size, -1, 3, 3) |
|
else: |
|
rot_mats = torch.index_select(pose.view(batch_size, -1, 3, 3), 1, |
|
neck_kin_chain) |
|
|
|
rel_rot_mat = torch.eye(3, device=vertices.device, |
|
dtype=dtype).unsqueeze_(dim=0).repeat( |
|
batch_size, 1, 1) |
|
for idx in range(len(neck_kin_chain)): |
|
rel_rot_mat = torch.bmm(rot_mats[:, idx], rel_rot_mat) |
|
|
|
y_rot_angle = torch.round( |
|
torch.clamp(-rot_mat_to_euler(rel_rot_mat) * 180.0 / np.pi, |
|
max=39)).to(dtype=torch.long) |
|
neg_mask = y_rot_angle.lt(0).to(dtype=torch.long) |
|
mask = y_rot_angle.lt(-39).to(dtype=torch.long) |
|
neg_vals = mask * 78 + (1 - mask) * (39 - y_rot_angle) |
|
y_rot_angle = (neg_mask * neg_vals + (1 - neg_mask) * y_rot_angle) |
|
|
|
dyn_lmk_faces_idx = torch.index_select(dynamic_lmk_faces_idx, 0, |
|
y_rot_angle) |
|
dyn_lmk_b_coords = torch.index_select(dynamic_lmk_b_coords, 0, y_rot_angle) |
|
|
|
return dyn_lmk_faces_idx, dyn_lmk_b_coords |
|
|
|
|
|
def vertices2landmarks(vertices: Tensor, faces: Tensor, lmk_faces_idx: Tensor, |
|
lmk_bary_coords: Tensor) -> Tensor: |
|
''' Calculates landmarks by barycentric interpolation |
|
|
|
Parameters |
|
---------- |
|
vertices: torch.tensor BxVx3, dtype = torch.float32 |
|
The tensor of input vertices |
|
faces: torch.tensor Fx3, dtype = torch.long |
|
The faces of the mesh |
|
lmk_faces_idx: torch.tensor L, dtype = torch.long |
|
The tensor with the indices of the faces used to calculate the |
|
landmarks. |
|
lmk_bary_coords: torch.tensor Lx3, dtype = torch.float32 |
|
The tensor of barycentric coordinates that are used to interpolate |
|
the landmarks |
|
|
|
Returns |
|
------- |
|
landmarks: torch.tensor BxLx3, dtype = torch.float32 |
|
The coordinates of the landmarks for each mesh in the batch |
|
''' |
|
|
|
|
|
batch_size, num_verts = vertices.shape[:2] |
|
device = vertices.device |
|
|
|
lmk_faces = torch.index_select(faces, 0, lmk_faces_idx.view(-1)).view( |
|
batch_size, -1, 3) |
|
|
|
lmk_faces += torch.arange(batch_size, dtype=torch.long, |
|
device=device).view(-1, 1, 1) * num_verts |
|
|
|
lmk_vertices = vertices.view(-1, 3)[lmk_faces].view(batch_size, -1, 3, 3) |
|
|
|
landmarks = torch.einsum('blfi,blf->bli', [lmk_vertices, lmk_bary_coords]) |
|
return landmarks |
|
|
|
|
|
def lbs( |
|
betas: Tensor, |
|
pose: Tensor, |
|
v_template: Tensor, |
|
shapedirs: Tensor, |
|
posedirs: Tensor, |
|
J_regressor: Tensor, |
|
parents: Tensor, |
|
lbs_weights: Tensor, |
|
pose2rot: bool = True, |
|
return_transformation: bool = False, |
|
) -> Tuple[Tensor, Tensor, Optional[Tensor], Optional[Tensor]]: |
|
''' Performs Linear Blend Skinning with the given shape and pose parameters |
|
|
|
Parameters |
|
---------- |
|
betas : torch.tensor BxNB |
|
The tensor of shape parameters |
|
pose : torch.tensor Bx(J + 1) * 3 |
|
The pose parameters in axis-angle format |
|
v_template torch.tensor BxVx3 |
|
The template mesh that will be deformed |
|
shapedirs : torch.tensor 1xNB |
|
The tensor of PCA shape displacements |
|
posedirs : torch.tensor Px(V * 3) |
|
The pose PCA coefficients |
|
J_regressor : torch.tensor JxV |
|
The regressor array that is used to calculate the joints from |
|
the position of the vertices |
|
parents: torch.tensor J |
|
The array that describes the kinematic tree for the model |
|
lbs_weights: torch.tensor N x V x (J + 1) |
|
The linear blend skinning weights that represent how much the |
|
rotation matrix of each part affects each vertex |
|
pose2rot: bool, optional |
|
Flag on whether to convert the input pose tensor to rotation |
|
matrices. The default value is True. If False, then the pose tensor |
|
should already contain rotation matrices and have a size of |
|
Bx(J + 1)x9 |
|
dtype: torch.dtype, optional |
|
|
|
Returns |
|
------- |
|
verts: torch.tensor BxVx3 |
|
The vertices of the mesh after applying the shape and pose |
|
displacements. |
|
joints: torch.tensor BxJx3 |
|
The joints of the model |
|
''' |
|
|
|
batch_size = max(betas.shape[0], pose.shape[0]) |
|
device, dtype = betas.device, betas.dtype |
|
|
|
|
|
v_shaped = v_template + blend_shapes(betas, shapedirs) |
|
|
|
|
|
|
|
J = vertices2joints(J_regressor, v_shaped) |
|
|
|
|
|
|
|
ident = torch.eye(3, dtype=dtype, device=device) |
|
if pose2rot: |
|
rot_mats = batch_rodrigues(pose.view(-1, |
|
3)).view([batch_size, -1, 3, 3]) |
|
|
|
pose_feature = (rot_mats[:, 1:, :, :] - ident).view([batch_size, -1]) |
|
|
|
pose_offsets = torch.matmul(pose_feature, |
|
posedirs).view(batch_size, -1, 3) |
|
else: |
|
pose_feature = pose[:, 1:].view(batch_size, -1, 3, 3) - ident |
|
rot_mats = pose.view(batch_size, -1, 3, 3) |
|
|
|
pose_offsets = torch.matmul(pose_feature.view(batch_size, -1), |
|
posedirs).view(batch_size, -1, 3) |
|
|
|
v_posed = pose_offsets + v_shaped |
|
|
|
J_transformed, A = batch_rigid_transform(rot_mats, J, parents, dtype=dtype) |
|
|
|
|
|
|
|
W = lbs_weights.unsqueeze(dim=0).expand([batch_size, -1, -1]) |
|
|
|
num_joints = J_regressor.shape[0] |
|
T = torch.matmul(W, A.view(batch_size, num_joints, 16)) \ |
|
.view(batch_size, -1, 4, 4) |
|
|
|
homogen_coord = torch.ones([batch_size, v_posed.shape[1], 1], |
|
dtype=dtype, |
|
device=device) |
|
v_posed_homo = torch.cat([v_posed, homogen_coord], dim=2) |
|
v_homo = torch.matmul(T, torch.unsqueeze(v_posed_homo, dim=-1)) |
|
|
|
verts = v_homo[:, :, :3, 0] |
|
|
|
if return_transformation: |
|
return verts, J_transformed, A, T |
|
|
|
return verts, J_transformed |
|
|
|
|
|
def vertices2joints(J_regressor: Tensor, vertices: Tensor) -> Tensor: |
|
''' Calculates the 3D joint locations from the vertices |
|
|
|
Parameters |
|
---------- |
|
J_regressor : torch.tensor JxV |
|
The regressor array that is used to calculate the joints from the |
|
position of the vertices |
|
vertices : torch.tensor BxVx3 |
|
The tensor of mesh vertices |
|
|
|
Returns |
|
------- |
|
torch.tensor BxJx3 |
|
The location of the joints |
|
''' |
|
|
|
return torch.einsum('bik,ji->bjk', [vertices, J_regressor]) |
|
|
|
|
|
def blend_shapes(betas: Tensor, shape_disps: Tensor) -> Tensor: |
|
''' Calculates the per vertex displacement due to the blend shapes |
|
|
|
|
|
Parameters |
|
---------- |
|
betas : torch.tensor Bx(num_betas) |
|
Blend shape coefficients |
|
shape_disps: torch.tensor Vx3x(num_betas) |
|
Blend shapes |
|
|
|
Returns |
|
------- |
|
torch.tensor BxVx3 |
|
The per-vertex displacement due to shape deformation |
|
''' |
|
|
|
|
|
|
|
|
|
blend_shape = torch.einsum('bl,mkl->bmk', [betas, shape_disps]) |
|
return blend_shape |
|
|
|
|
|
def batch_rodrigues( |
|
rot_vecs: Tensor, |
|
epsilon: float = 1e-8, |
|
) -> Tensor: |
|
''' Calculates the rotation matrices for a batch of rotation vectors |
|
Parameters |
|
---------- |
|
rot_vecs: torch.tensor Nx3 |
|
array of N axis-angle vectors |
|
Returns |
|
------- |
|
R: torch.tensor Nx3x3 |
|
The rotation matrices for the given axis-angle parameters |
|
''' |
|
|
|
batch_size = rot_vecs.shape[0] |
|
device, dtype = rot_vecs.device, rot_vecs.dtype |
|
|
|
angle = torch.norm(rot_vecs + 1e-8, dim=1, keepdim=True) |
|
rot_dir = rot_vecs / angle |
|
|
|
cos = torch.unsqueeze(torch.cos(angle), dim=1) |
|
sin = torch.unsqueeze(torch.sin(angle), dim=1) |
|
|
|
|
|
rx, ry, rz = torch.split(rot_dir, 1, dim=1) |
|
K = torch.zeros((batch_size, 3, 3), dtype=dtype, device=device) |
|
|
|
zeros = torch.zeros((batch_size, 1), dtype=dtype, device=device) |
|
K = torch.cat([zeros, -rz, ry, rz, zeros, -rx, -ry, rx, zeros], dim=1) \ |
|
.view((batch_size, 3, 3)) |
|
|
|
ident = torch.eye(3, dtype=dtype, device=device).unsqueeze(dim=0) |
|
rot_mat = ident + sin * K + (1 - cos) * torch.bmm(K, K) |
|
return rot_mat |
|
|
|
|
|
def transform_mat(R: Tensor, t: Tensor) -> Tensor: |
|
''' Creates a batch of transformation matrices |
|
Args: |
|
- R: Bx3x3 array of a batch of rotation matrices |
|
- t: Bx3x1 array of a batch of translation vectors |
|
Returns: |
|
- T: Bx4x4 Transformation matrix |
|
''' |
|
|
|
return torch.cat([F.pad(R, [0, 0, 0, 1]), |
|
F.pad(t, [0, 0, 0, 1], value=1)], |
|
dim=2) |
|
|
|
|
|
def batch_rigid_transform(rot_mats: Tensor, |
|
joints: Tensor, |
|
parents: Tensor, |
|
dtype=torch.float32) -> Tensor: |
|
""" |
|
Applies a batch of rigid transformations to the joints |
|
|
|
Parameters |
|
---------- |
|
rot_mats : torch.tensor BxNx3x3 |
|
Tensor of rotation matrices |
|
joints : torch.tensor BxNx3 |
|
Locations of joints |
|
parents : torch.tensor BxN |
|
The kinematic tree of each object |
|
dtype : torch.dtype, optional: |
|
The data type of the created tensors, the default is torch.float32 |
|
|
|
Returns |
|
------- |
|
posed_joints : torch.tensor BxNx3 |
|
The locations of the joints after applying the pose rotations |
|
rel_transforms : torch.tensor BxNx4x4 |
|
The relative (with respect to the root joint) rigid transformations |
|
for all the joints |
|
""" |
|
|
|
joints = torch.unsqueeze(joints, dim=-1) |
|
|
|
rel_joints = joints.clone() |
|
rel_joints[:, 1:] -= joints[:, parents[1:]] |
|
|
|
transforms_mat = transform_mat(rot_mats.reshape(-1, 3, 3), |
|
rel_joints.reshape(-1, 3, 1)).reshape( |
|
-1, joints.shape[1], 4, 4) |
|
|
|
transform_chain = [transforms_mat[:, 0]] |
|
for i in range(1, parents.shape[0]): |
|
|
|
|
|
curr_res = torch.matmul(transform_chain[parents[i]], transforms_mat[:, |
|
i]) |
|
transform_chain.append(curr_res) |
|
|
|
transforms = torch.stack(transform_chain, dim=1) |
|
|
|
|
|
posed_joints = transforms[:, :, :3, 3] |
|
|
|
joints_homogen = F.pad(joints, [0, 0, 0, 1]) |
|
|
|
rel_transforms = transforms - F.pad( |
|
torch.matmul(transforms, joints_homogen), [3, 0, 0, 0, 0, 0, 0, 0]) |
|
|
|
return posed_joints, rel_transforms |
|
|