|
""" |
|
Author: Yao Feng |
|
Copyright (c) 2020, Yao Feng |
|
All rights reserved. |
|
""" |
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from skimage.io import imread |
|
import imageio |
|
|
|
from . import util |
|
|
|
|
|
def set_rasterizer(type='pytorch3d'): |
|
if type == 'pytorch3d': |
|
global Meshes, load_obj, rasterize_meshes |
|
from pytorch3d.structures import Meshes |
|
from pytorch3d.io import load_obj |
|
from pytorch3d.renderer.mesh import rasterize_meshes |
|
elif type == 'standard': |
|
global standard_rasterize, load_obj |
|
import os |
|
from .util import load_obj |
|
|
|
|
|
from torch.utils.cpp_extension import load, CUDA_HOME |
|
curr_dir = os.path.dirname(__file__) |
|
standard_rasterize_cuda = \ |
|
load(name='standard_rasterize_cuda', |
|
sources=[f'{curr_dir}/rasterizer/standard_rasterize_cuda.cpp', |
|
f'{curr_dir}/rasterizer/standard_rasterize_cuda_kernel.cu'], |
|
extra_cuda_cflags=['-std=c++14', '-ccbin=$$(which gcc-7)']) |
|
from standard_rasterize_cuda import standard_rasterize |
|
|
|
|
|
|
|
|
|
|
|
class StandardRasterizer(nn.Module): |
|
""" Alg: https://www.scratchapixel.com/lessons/3d-basic-rendering/rasterization-practical-implementation |
|
Notice: |
|
x,y,z are in image space, normalized to [-1, 1] |
|
can render non-squared image |
|
not differentiable |
|
""" |
|
|
|
def __init__(self, height, width=None): |
|
""" |
|
use fixed raster_settings for rendering faces |
|
""" |
|
super().__init__() |
|
if width is None: |
|
width = height |
|
self.h = h = height |
|
self.w = w = width |
|
|
|
def forward(self, vertices, faces, attributes=None, h=None, w=None): |
|
device = vertices.device |
|
if h is None: |
|
h = self.h |
|
if w is None: |
|
w = self.h |
|
bz = vertices.shape[0] |
|
depth_buffer = torch.zeros([bz, h, w]).float().to(device) + 1e6 |
|
triangle_buffer = torch.zeros([bz, h, w]).int().to(device) - 1 |
|
baryw_buffer = torch.zeros([bz, h, w, 3]).float().to(device) |
|
vert_vis = torch.zeros([bz, vertices.shape[1]]).float().to(device) |
|
|
|
vertices = vertices.clone().float() |
|
vertices[..., 0] = vertices[..., 0] * w / 2 + w / 2 |
|
vertices[..., 1] = vertices[..., 1] * h / 2 + h / 2 |
|
vertices[..., 2] = vertices[..., 2] * w / 2 |
|
f_vs = util.face_vertices(vertices, faces) |
|
|
|
standard_rasterize(f_vs, depth_buffer, triangle_buffer, baryw_buffer, |
|
h, w) |
|
pix_to_face = triangle_buffer[:, :, :, None].long() |
|
bary_coords = baryw_buffer[:, :, :, None, :] |
|
vismask = (pix_to_face > -1).float() |
|
D = attributes.shape[-1] |
|
attributes = attributes.clone() |
|
attributes = attributes.view(attributes.shape[0] * attributes.shape[1], |
|
3, attributes.shape[-1]) |
|
N, H, W, K, _ = bary_coords.shape |
|
mask = pix_to_face == -1 |
|
pix_to_face = pix_to_face.clone() |
|
pix_to_face[mask] = 0 |
|
idx = pix_to_face.view(N * H * W * K, 1, 1).expand(N * H * W * K, 3, D) |
|
pixel_face_vals = attributes.gather(0, idx).view(N, H, W, K, 3, D) |
|
pixel_vals = (bary_coords[..., None] * pixel_face_vals).sum(dim=-2) |
|
pixel_vals[mask] = 0 |
|
pixel_vals = pixel_vals[:, :, :, 0].permute(0, 3, 1, 2) |
|
pixel_vals = torch.cat( |
|
[pixel_vals, vismask[:, :, :, 0][:, None, :, :]], dim=1) |
|
return pixel_vals |
|
|
|
|
|
class Pytorch3dRasterizer(nn.Module): |
|
""" Borrowed from https://github.com/facebookresearch/pytorch3d |
|
This class implements methods for rasterizing a batch of heterogenous Meshes. |
|
Notice: |
|
x,y,z are in image space, normalized |
|
can only render squared image now |
|
""" |
|
|
|
def __init__(self, image_size=224): |
|
""" |
|
use fixed raster_settings for rendering faces |
|
""" |
|
super().__init__() |
|
raster_settings = { |
|
'image_size': image_size, |
|
'blur_radius': 0.0, |
|
'faces_per_pixel': 1, |
|
'bin_size': None, |
|
'max_faces_per_bin': None, |
|
'perspective_correct': False, |
|
} |
|
raster_settings = util.dict2obj(raster_settings) |
|
self.raster_settings = raster_settings |
|
|
|
def forward(self, vertices, faces, attributes=None, h=None, w=None): |
|
fixed_vertices = vertices.clone() |
|
fixed_vertices[..., :2] = -fixed_vertices[..., :2] |
|
meshes_screen = Meshes(verts=fixed_vertices.float(), |
|
faces=faces.long()) |
|
raster_settings = self.raster_settings |
|
pix_to_face, zbuf, bary_coords, dists = rasterize_meshes( |
|
meshes_screen, |
|
image_size=raster_settings.image_size, |
|
blur_radius=raster_settings.blur_radius, |
|
faces_per_pixel=raster_settings.faces_per_pixel, |
|
bin_size=raster_settings.bin_size, |
|
max_faces_per_bin=raster_settings.max_faces_per_bin, |
|
perspective_correct=raster_settings.perspective_correct, |
|
) |
|
vismask = (pix_to_face > -1).float() |
|
D = attributes.shape[-1] |
|
attributes = attributes.clone() |
|
attributes = attributes.view(attributes.shape[0] * attributes.shape[1], |
|
3, attributes.shape[-1]) |
|
N, H, W, K, _ = bary_coords.shape |
|
mask = pix_to_face == -1 |
|
pix_to_face = pix_to_face.clone() |
|
pix_to_face[mask] = 0 |
|
idx = pix_to_face.view(N * H * W * K, 1, 1).expand(N * H * W * K, 3, D) |
|
pixel_face_vals = attributes.gather(0, idx).view(N, H, W, K, 3, D) |
|
pixel_vals = (bary_coords[..., None] * pixel_face_vals).sum(dim=-2) |
|
pixel_vals[mask] = 0 |
|
pixel_vals = pixel_vals[:, :, :, 0].permute(0, 3, 1, 2) |
|
pixel_vals = torch.cat( |
|
[pixel_vals, vismask[:, :, :, 0][:, None, :, :]], dim=1) |
|
return pixel_vals |
|
|
|
|
|
class SRenderY(nn.Module): |
|
|
|
def __init__(self, |
|
image_size, |
|
obj_filename, |
|
uv_size=256, |
|
rasterizer_type='standard'): |
|
super(SRenderY, self).__init__() |
|
self.image_size = image_size |
|
self.uv_size = uv_size |
|
|
|
if rasterizer_type == 'pytorch3d': |
|
self.rasterizer = Pytorch3dRasterizer(image_size) |
|
self.uv_rasterizer = Pytorch3dRasterizer(uv_size) |
|
verts, faces, aux = load_obj(obj_filename) |
|
uvcoords = aux.verts_uvs[None, ...] |
|
uvfaces = faces.textures_idx[None, ...] |
|
faces = faces.verts_idx[None, ...] |
|
elif rasterizer_type == 'standard': |
|
self.rasterizer = StandardRasterizer(image_size) |
|
self.uv_rasterizer = StandardRasterizer(uv_size) |
|
verts, uvcoords, faces, uvfaces = load_obj(obj_filename) |
|
verts = verts[None, ...] |
|
uvcoords = uvcoords[None, ...] |
|
faces = faces[None, ...] |
|
uvfaces = uvfaces[None, ...] |
|
else: |
|
NotImplementedError |
|
|
|
|
|
dense_triangles = util.generate_triangles(uv_size, uv_size) |
|
self.register_buffer( |
|
'dense_faces', |
|
torch.from_numpy(dense_triangles).long()[None, :, :]) |
|
self.register_buffer('faces', faces) |
|
self.register_buffer('raw_uvcoords', uvcoords) |
|
|
|
|
|
uvcoords = torch.cat([uvcoords, uvcoords[:, :, 0:1] * 0. + 1.], |
|
-1) |
|
uvcoords = uvcoords * 2 - 1 |
|
uvcoords[..., 1] = -uvcoords[..., 1] |
|
face_uvcoords = util.face_vertices(uvcoords, uvfaces) |
|
self.register_buffer('uvcoords', uvcoords) |
|
self.register_buffer('uvfaces', uvfaces) |
|
self.register_buffer('face_uvcoords', face_uvcoords) |
|
|
|
|
|
colors = torch.tensor([180, 180, 180])[None, None, :].repeat( |
|
1, |
|
faces.max() + 1, 1).float() / 255. |
|
face_colors = util.face_vertices(colors, faces) |
|
self.register_buffer('vertex_colors', colors) |
|
self.register_buffer('face_colors', face_colors) |
|
|
|
|
|
pi = np.pi |
|
constant_factor = torch.tensor([ |
|
1 / np.sqrt(4 * pi), ((2 * pi) / 3) * (np.sqrt(3 / (4 * pi))), |
|
((2 * pi) / 3) * (np.sqrt(3 / (4 * pi))), ((2 * pi) / 3) * |
|
(np.sqrt(3 / (4 * pi))), (pi / 4) * (3) * (np.sqrt(5 / (12 * pi))), |
|
(pi / 4) * (3) * (np.sqrt(5 / (12 * pi))), |
|
(pi / 4) * (3) * (np.sqrt(5 / (12 * pi))), |
|
(pi / 4) * (3 / 2) * (np.sqrt(5 / (12 * pi))), |
|
(pi / 4) * (1 / 2) * (np.sqrt(5 / (4 * pi))) |
|
]).float() |
|
self.register_buffer('constant_factor', constant_factor) |
|
|
|
def forward(self, |
|
vertices, |
|
transformed_vertices, |
|
albedos, |
|
lights=None, |
|
light_type='point', |
|
background=None, |
|
h=None, |
|
w=None): |
|
''' |
|
-- Texture Rendering |
|
vertices: [batch_size, V, 3], vertices in world space, for calculating normals, then shading |
|
transformed_vertices: [batch_size, V, 3], rnage:[-1,1], projected vertices, in image space, for rasterization |
|
albedos: [batch_size, 3, h, w], uv map |
|
lights: |
|
spherical homarnic: [N, 9(shcoeff), 3(rgb)] |
|
points/directional lighting: [N, n_lights, 6(xyzrgb)] |
|
light_type: |
|
point or directional |
|
''' |
|
batch_size = vertices.shape[0] |
|
|
|
transformed_vertices = transformed_vertices.clone() |
|
transformed_vertices[:, :, |
|
2] = transformed_vertices[:, :, |
|
2] - transformed_vertices[:, :, |
|
2].min( |
|
) |
|
transformed_vertices[:, :, |
|
2] = transformed_vertices[:, :, |
|
2] / transformed_vertices[:, :, |
|
2].max( |
|
) |
|
transformed_vertices[:, :, 2] = transformed_vertices[:, :, 2] * 80 + 10 |
|
|
|
|
|
face_vertices = util.face_vertices( |
|
vertices, self.faces.expand(batch_size, -1, -1)) |
|
normals = util.vertex_normals(vertices, |
|
self.faces.expand(batch_size, -1, -1)) |
|
face_normals = util.face_vertices( |
|
normals, self.faces.expand(batch_size, -1, -1)) |
|
transformed_normals = util.vertex_normals( |
|
transformed_vertices, self.faces.expand(batch_size, -1, -1)) |
|
transformed_face_normals = util.face_vertices( |
|
transformed_normals, self.faces.expand(batch_size, -1, -1)) |
|
attributes = torch.cat([ |
|
self.face_uvcoords.expand(batch_size, -1, -1, -1), |
|
transformed_face_normals.detach(), |
|
face_vertices.detach(), face_normals |
|
], -1) |
|
|
|
|
|
rendering = self.rasterizer(transformed_vertices, |
|
self.faces.expand(batch_size, -1, -1), |
|
attributes, h, w) |
|
|
|
|
|
|
|
alpha_images = rendering[:, -1, :, :][:, None, :, :].detach() |
|
|
|
|
|
uvcoords_images = rendering[:, :3, :, :] |
|
grid = (uvcoords_images).permute(0, 2, 3, 1)[:, :, :, :2] |
|
albedo_images = F.grid_sample(albedos, grid, align_corners=False) |
|
|
|
|
|
transformed_normal_map = rendering[:, 3:6, :, :].detach() |
|
pos_mask = (transformed_normal_map[:, 2:, :, :] < -0.05).float() |
|
|
|
|
|
normal_images = rendering[:, 9:12, :, :] |
|
if lights is not None: |
|
if lights.shape[1] == 9: |
|
shading_images = self.add_SHlight(normal_images, lights) |
|
else: |
|
if light_type == 'point': |
|
vertice_images = rendering[:, 6:9, :, :].detach() |
|
shading = self.add_pointlight( |
|
vertice_images.permute(0, 2, 3, |
|
1).reshape([batch_size, -1, 3]), |
|
normal_images.permute(0, 2, 3, |
|
1).reshape([batch_size, -1, 3]), |
|
lights) |
|
shading_images = shading.reshape([ |
|
batch_size, albedo_images.shape[2], |
|
albedo_images.shape[3], 3 |
|
]).permute(0, 3, 1, 2) |
|
else: |
|
shading = self.add_directionlight( |
|
normal_images.permute(0, 2, 3, |
|
1).reshape([batch_size, -1, 3]), |
|
lights) |
|
shading_images = shading.reshape([ |
|
batch_size, albedo_images.shape[2], |
|
albedo_images.shape[3], 3 |
|
]).permute(0, 3, 1, 2) |
|
images = albedo_images * shading_images |
|
else: |
|
images = albedo_images |
|
shading_images = images.detach() * 0. |
|
|
|
if background is None: |
|
images = images*alpha_images + \ |
|
torch.ones_like(images).to(vertices.device)*(1-alpha_images) |
|
else: |
|
|
|
images = images * alpha_images + background.contiguous() * ( |
|
1 - alpha_images) |
|
|
|
outputs = { |
|
'images': images, |
|
'albedo_images': albedo_images, |
|
'alpha_images': alpha_images, |
|
'pos_mask': pos_mask, |
|
'shading_images': shading_images, |
|
'grid': grid, |
|
'normals': normals, |
|
'normal_images': normal_images, |
|
'transformed_normals': transformed_normals, |
|
} |
|
|
|
return outputs |
|
|
|
def add_SHlight(self, normal_images, sh_coeff): |
|
''' |
|
sh_coeff: [bz, 9, 3] |
|
''' |
|
N = normal_images |
|
sh = torch.stack([ |
|
N[:, 0] * 0. + 1., N[:, 0], N[:, 1], N[:, 2], N[:, 0] * N[:, 1], |
|
N[:, 0] * N[:, 2], N[:, 1] * N[:, 2], N[:, 0]**2 - N[:, 1]**2, 3 * |
|
(N[:, 2]**2) - 1 |
|
], 1) |
|
sh = sh * self.constant_factor[None, :, None, None] |
|
|
|
shading = torch.sum( |
|
sh_coeff[:, :, :, None, None] * sh[:, :, None, :, :], 1) |
|
return shading |
|
|
|
def add_pointlight(self, vertices, normals, lights): |
|
''' |
|
vertices: [bz, nv, 3] |
|
lights: [bz, nlight, 6] |
|
returns: |
|
shading: [bz, nv, 3] |
|
''' |
|
light_positions = lights[:, :, :3] |
|
light_intensities = lights[:, :, 3:] |
|
directions_to_lights = F.normalize(light_positions[:, :, None, :] - |
|
vertices[:, None, :, :], |
|
dim=3) |
|
|
|
normals_dot_lights = (normals[:, None, :, :] * |
|
directions_to_lights).sum(dim=3) |
|
shading = normals_dot_lights[:, :, :, |
|
None] * light_intensities[:, :, None, :] |
|
return shading.mean(1) |
|
|
|
def add_directionlight(self, normals, lights): |
|
''' |
|
normals: [bz, nv, 3] |
|
lights: [bz, nlight, 6] |
|
returns: |
|
shading: [bz, nv, 3] |
|
''' |
|
light_direction = lights[:, :, :3] |
|
light_intensities = lights[:, :, 3:] |
|
directions_to_lights = F.normalize( |
|
light_direction[:, :, None, :].expand(-1, -1, normals.shape[1], |
|
-1), |
|
dim=3) |
|
|
|
|
|
normals_dot_lights = torch.clamp( |
|
(normals[:, None, :, :] * directions_to_lights).sum(dim=3), 0., 1.) |
|
shading = normals_dot_lights[:, :, :, |
|
None] * light_intensities[:, :, None, :] |
|
return shading.mean(1) |
|
|
|
def render_shape(self, |
|
vertices, |
|
transformed_vertices, |
|
colors=None, |
|
background=None, |
|
detail_normal_images=None, |
|
lights=None, |
|
return_grid=False, |
|
uv_detail_normals=None, |
|
h=None, |
|
w=None): |
|
''' |
|
-- rendering shape with detail normal map |
|
''' |
|
batch_size = vertices.shape[0] |
|
if lights is None: |
|
light_positions = torch.tensor([ |
|
[-5, 5, -5], |
|
[5, 5, -5], |
|
[-5, -5, -5], |
|
[5, -5, -5], |
|
[0, 0, -5], |
|
])[None, :, :].expand(batch_size, -1, -1).float() |
|
|
|
light_intensities = torch.ones_like(light_positions).float() * 1.7 |
|
lights = torch.cat((light_positions, light_intensities), |
|
2).to(vertices.device) |
|
|
|
transformed_vertices = transformed_vertices.clone() |
|
transformed_vertices[:, :, |
|
2] = transformed_vertices[:, :, |
|
2] - transformed_vertices[:, :, |
|
2].min( |
|
) |
|
transformed_vertices[:, :, |
|
2] = transformed_vertices[:, :, |
|
2] / transformed_vertices[:, :, |
|
2].max( |
|
) |
|
transformed_vertices[:, :, 2] = transformed_vertices[:, :, 2] * 80 + 10 |
|
|
|
|
|
face_vertices = util.face_vertices( |
|
vertices, self.faces.expand(batch_size, -1, -1)) |
|
normals = util.vertex_normals(vertices, |
|
self.faces.expand(batch_size, -1, -1)) |
|
face_normals = util.face_vertices( |
|
normals, self.faces.expand(batch_size, -1, -1)) |
|
transformed_normals = util.vertex_normals( |
|
transformed_vertices, self.faces.expand(batch_size, -1, -1)) |
|
transformed_face_normals = util.face_vertices( |
|
transformed_normals, self.faces.expand(batch_size, -1, -1)) |
|
if colors is None: |
|
colors = self.face_colors.expand(batch_size, -1, -1, -1) |
|
attributes = torch.cat([ |
|
colors, |
|
transformed_face_normals.detach(), |
|
face_vertices.detach(), face_normals, |
|
self.face_uvcoords.expand(batch_size, -1, -1, -1) |
|
], -1) |
|
|
|
rendering = self.rasterizer(transformed_vertices, |
|
self.faces.expand(batch_size, -1, -1), |
|
attributes, h, w) |
|
|
|
|
|
alpha_images = rendering[:, -1, :, :][:, None, :, :].detach() |
|
|
|
|
|
albedo_images = rendering[:, :3, :, :] |
|
|
|
transformed_normal_map = rendering[:, 3:6, :, :].detach() |
|
pos_mask = (transformed_normal_map[:, 2:, :, :] < 0).float() |
|
|
|
|
|
normal_images = rendering[:, 9:12, :, :].detach() |
|
vertice_images = rendering[:, 6:9, :, :].detach() |
|
if detail_normal_images is not None: |
|
normal_images = detail_normal_images |
|
if uv_detail_normals is not None: |
|
uvcoords_images = rendering[:, 12:15, :, :] |
|
grid = (uvcoords_images).permute(0, 2, 3, 1)[:, :, :, :2] |
|
detail_normal_images = F.grid_sample(uv_detail_normals, |
|
grid, |
|
align_corners=False) |
|
normal_images = detail_normal_images |
|
|
|
shading = self.add_directionlight( |
|
normal_images.permute(0, 2, 3, 1).reshape([batch_size, -1, 3]), |
|
lights) |
|
shading_images = shading.reshape( |
|
[batch_size, albedo_images.shape[2], albedo_images.shape[3], |
|
3]).permute(0, 3, 1, 2).contiguous() |
|
shaded_images = albedo_images * shading_images |
|
|
|
if background is None: |
|
shape_images = shaded_images*alpha_images + \ |
|
torch.ones_like(shaded_images).to( |
|
vertices.device)*(1-alpha_images) |
|
else: |
|
|
|
shape_images = shaded_images*alpha_images + \ |
|
background.contiguous()*(1-alpha_images) |
|
|
|
if return_grid: |
|
uvcoords_images = rendering[:, 12:15, :, :] |
|
grid = (uvcoords_images).permute(0, 2, 3, 1)[:, :, :, :2] |
|
return shape_images, normal_images, grid |
|
else: |
|
return shape_images |
|
|
|
def render_depth(self, transformed_vertices): |
|
''' |
|
-- rendering depth |
|
''' |
|
transformed_vertices = transformed_vertices.clone() |
|
batch_size = transformed_vertices.shape[0] |
|
|
|
transformed_vertices[:, :, |
|
2] = transformed_vertices[:, :, |
|
2] - transformed_vertices[:, :, |
|
2].min( |
|
) |
|
z = -transformed_vertices[:, :, 2:].repeat(1, 1, 3) |
|
z = z - z.min() |
|
z = z / z.max() |
|
|
|
attributes = util.face_vertices(z, |
|
self.faces.expand(batch_size, -1, -1)) |
|
|
|
rendering = self.rasterizer(transformed_vertices, |
|
self.faces.expand(batch_size, -1, -1), |
|
attributes) |
|
|
|
|
|
alpha_images = rendering[:, -1, :, :][:, None, :, :].detach() |
|
depth_images = rendering[:, :1, :, :] |
|
return depth_images |
|
|
|
def render_colors(self, transformed_vertices, colors, h=None, w=None): |
|
''' |
|
-- rendering colors: could be rgb color/ normals, etc |
|
colors: [bz, num of vertices, 3] |
|
''' |
|
transformed_vertices = transformed_vertices.clone() |
|
batch_size = colors.shape[0] |
|
|
|
transformed_vertices[:, :, |
|
2] = transformed_vertices[:, :, |
|
2] - transformed_vertices[:, :, |
|
2].min( |
|
) |
|
transformed_vertices[:, :, |
|
2] = transformed_vertices[:, :, |
|
2] / transformed_vertices[:, :, |
|
2].max( |
|
) |
|
transformed_vertices[:, :, 2] = transformed_vertices[:, :, 2] * 80 + 10 |
|
|
|
attributes = util.face_vertices(colors, |
|
self.faces.expand(batch_size, -1, -1)) |
|
|
|
rendering = self.rasterizer(transformed_vertices, |
|
self.faces.expand(batch_size, -1, -1), |
|
attributes, |
|
h=h, |
|
w=w) |
|
|
|
alpha_images = rendering[:, [-1], :, :].detach() |
|
images = rendering[:, :3, :, :] * alpha_images |
|
return images |
|
|
|
def world2uv(self, vertices): |
|
''' |
|
project vertices from world space to uv space |
|
vertices: [bz, V, 3] |
|
uv_vertices: [bz, 3, h, w] |
|
''' |
|
batch_size = vertices.shape[0] |
|
face_vertices = util.face_vertices( |
|
vertices, self.faces.expand(batch_size, -1, -1)) |
|
uv_vertices = self.uv_rasterizer( |
|
self.uvcoords.expand(batch_size, -1, -1), |
|
self.uvfaces.expand(batch_size, -1, -1), face_vertices)[:, :3] |
|
return uv_vertices |
|
|