PSHuman / lib /pixielib /pixie.py
fffiloni's picture
Migrated from GitHub
2252f3d verified
# -*- coding: utf-8 -*-
#
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# Using this computer program means that you agree to the terms
# in the LICENSE file included with this software distribution.
# Any use not explicitly granted by the LICENSE is prohibited.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# For comments or questions, please email us at pixie@tue.mpg.de
# For commercial licensing contact, please contact ps-license@tuebingen.mpg.de
import os
import torch
import torchvision
import torch.nn.functional as F
import torch.nn as nn
import numpy as np
from skimage.io import imread
import cv2
from .models.encoders import ResnetEncoder, MLP, HRNEncoder
from .models.moderators import TempSoftmaxFusion
from .models.SMPLX import SMPLX
from .utils import util
from .utils import rotation_converter as converter
from .utils import tensor_cropper
from .utils.config import cfg
class PIXIE(object):
def __init__(self, config=None, device="cuda:0"):
if config is None:
self.cfg = cfg
else:
self.cfg = config
self.device = device
# parameters setting
self.param_list_dict = {}
for lst in self.cfg.params.keys():
param_list = cfg.params.get(lst)
self.param_list_dict[lst] = {
i: cfg.model.get("n_" + i)
for i in param_list
}
# Build the models
self._create_model()
# Set up the cropping modules used to generate face/hand crops from the body predictions
self._setup_cropper()
def forward(self, data):
# encode + decode
param_dict = self.encode(
{"body": {
"image": data
}},
threthold=True,
keep_local=True,
copy_and_paste=False,
)
opdict = self.decode(param_dict["body"], param_type="body")
return opdict
def _setup_cropper(self):
self.Cropper = {}
for crop_part in ["head", "hand"]:
data_cfg = self.cfg.dataset[crop_part]
scale_size = (data_cfg.scale_min + data_cfg.scale_max) * 0.5
self.Cropper[crop_part] = tensor_cropper.Cropper(
crop_size=data_cfg.image_size,
scale=[scale_size, scale_size],
trans_scale=0,
)
def _create_model(self):
self.model_dict = {}
# Build all image encoders
# Hand encoder only works for right hand, for left hand, flip inputs and flip the results back
self.Encoder = {}
for key in self.cfg.network.encoder.keys():
if self.cfg.network.encoder.get(key).type == "resnet50":
self.Encoder[key] = ResnetEncoder().to(self.device)
elif self.cfg.network.encoder.get(key).type == "hrnet":
self.Encoder[key] = HRNEncoder().to(self.device)
self.model_dict[f"Encoder_{key}"] = self.Encoder[key].state_dict()
# Build the parameter regressors
self.Regressor = {}
for key in self.cfg.network.regressor.keys():
n_output = sum(self.param_list_dict[f"{key}_list"].values())
channels = ([2048] + self.cfg.network.regressor.get(key).channels +
[n_output])
if self.cfg.network.regressor.get(key).type == "mlp":
self.Regressor[key] = MLP(channels=channels).to(self.device)
self.model_dict[f"Regressor_{key}"] = self.Regressor[
key].state_dict()
# Build the extractors
# to extract separate head/left hand/right hand feature from body feature
self.Extractor = {}
for key in self.cfg.network.extractor.keys():
channels = [
2048
] + self.cfg.network.extractor.get(key).channels + [2048]
if self.cfg.network.extractor.get(key).type == "mlp":
self.Extractor[key] = MLP(channels=channels).to(self.device)
self.model_dict[f"Extractor_{key}"] = self.Extractor[
key].state_dict()
# Build the moderators
self.Moderator = {}
for key in self.cfg.network.moderator.keys():
share_part = key.split("_")[0]
detach_inputs = self.cfg.network.moderator.get(key).detach_inputs
detach_feature = self.cfg.network.moderator.get(key).detach_feature
channels = [2048 * 2
] + self.cfg.network.moderator.get(key).channels + [2]
self.Moderator[key] = TempSoftmaxFusion(
detach_inputs=detach_inputs,
detach_feature=detach_feature,
channels=channels,
).to(self.device)
self.model_dict[f"Moderator_{key}"] = self.Moderator[
key].state_dict()
# Build the SMPL-X body model, which we also use to represent faces and
# hands, using the relevant parts only
self.smplx = SMPLX(self.cfg.model).to(self.device)
self.part_indices = self.smplx.part_indices
# -- resume model
model_path = self.cfg.pretrained_modelpath
if os.path.exists(model_path):
checkpoint = torch.load(model_path, map_location=self.device)
for key in self.model_dict.keys():
util.copy_state_dict(self.model_dict[key], checkpoint[key])
else:
print(f"pixie trained model path: {model_path} does not exist!")
exit()
# eval mode
for module in [
self.Encoder, self.Regressor, self.Moderator, self.Extractor
]:
for net in module.values():
net.eval()
def decompose_code(self, code, num_dict):
"""Convert a flattened parameter vector to a dictionary of parameters"""
code_dict = {}
start = 0
for key in num_dict:
end = start + int(num_dict[key])
code_dict[key] = code[:, start:end]
start = end
return code_dict
def part_from_body(self, image, part_key, points_dict, crop_joints=None):
"""crop part(head/left_hand/right_hand) out from body data, joints also change accordingly"""
assert part_key in ["head", "left_hand", "right_hand"]
assert "smplx_kpt" in points_dict.keys()
if part_key == "head":
# use face 68 kpts for cropping head image
indices_key = "face"
elif part_key == "left_hand":
indices_key = "left_hand"
elif part_key == "right_hand":
indices_key = "right_hand"
# get points for cropping
part_indices = self.part_indices[indices_key]
if crop_joints is not None:
points_for_crop = crop_joints[:, part_indices]
else:
points_for_crop = points_dict["smplx_kpt"][:, part_indices]
# crop
cropper_key = "hand" if "hand" in part_key else part_key
points_scale = image.shape[-2:]
cropped_image, tform = self.Cropper[cropper_key].crop(
image, points_for_crop, points_scale)
# transform points(must be normalized to [-1.1]) accordingly
cropped_points_dict = {}
for points_key in points_dict.keys():
points = points_dict[points_key]
cropped_points = self.Cropper[cropper_key].transform_points(
points, tform, points_scale, normalize=True)
cropped_points_dict[points_key] = cropped_points
return cropped_image, cropped_points_dict
@torch.no_grad()
def encode(
self,
data,
threthold=True,
keep_local=True,
copy_and_paste=False,
body_only=False,
):
"""Encode images to smplx parameters
Args:
data: dict
key: image_type (body/head/hand)
value:
image: [bz, 3, 224, 224], range [0,1]
image_hd(needed if key==body): a high res version of image, only for cropping parts from body image
head_image: optinal, well-cropped head from body image
left_hand_image: optinal, well-cropped left hand from body image
right_hand_image: optinal, well-cropped right hand from body image
Returns:
param_dict: dict
key: image_type (body/head/hand)
value: param_dict
"""
for key in data.keys():
assert key in ["body", "head", "hand"]
feature = {}
param_dict = {}
# Encode features
for key in data.keys():
part = key
# encode feature
feature[key] = {}
feature[key][part] = self.Encoder[part](data[key]["image"])
# for head/hand image
if key == "head" or key == "hand":
# predict head/hand-only parameters from part feature
part_dict = self.decompose_code(
self.Regressor[part](feature[key][part]),
self.param_list_dict[f"{part}_list"],
)
# if input is part data, skip feature fusion: share feature is the same as part feature
# then predict share parameters
feature[key][f"{key}_share"] = feature[key][key]
share_dict = self.decompose_code(
self.Regressor[f"{part}_share"](
feature[key][f"{part}_share"]),
self.param_list_dict[f"{part}_share_list"],
)
# compose parameters
param_dict[key] = {**share_dict, **part_dict}
# for body image
if key == "body":
fusion_weight = {}
f_body = feature["body"]["body"]
# extract part feature
for part_name in ["head", "left_hand", "right_hand"]:
feature["body"][f"{part_name}_share"] = self.Extractor[
f"{part_name}_share"](f_body)
# -- check if part crops are given, if not, crop parts by coarse body estimation
if ("head_image" not in data[key].keys()
or "left_hand_image" not in data[key].keys()
or "right_hand_image" not in data[key].keys()):
# - run without fusion to get coarse estimation, for cropping parts
# body only
body_dict = self.decompose_code(
self.Regressor[part](feature[key][part]),
self.param_list_dict[part + "_list"],
)
# head share
head_share_dict = self.decompose_code(
self.Regressor["head" + "_share"](
feature[key]["head" + "_share"]),
self.param_list_dict["head" + "_share_list"],
)
# right hand share
right_hand_share_dict = self.decompose_code(
self.Regressor["hand" + "_share"](
feature[key]["right_hand" + "_share"]),
self.param_list_dict["hand" + "_share_list"],
)
# left hand share
left_hand_share_dict = self.decompose_code(
self.Regressor["hand" + "_share"](
feature[key]["left_hand" + "_share"]),
self.param_list_dict["hand" + "_share_list"],
)
# change the dict name from right to left
left_hand_share_dict[
"left_hand_pose"] = left_hand_share_dict.pop(
"right_hand_pose")
left_hand_share_dict[
"left_wrist_pose"] = left_hand_share_dict.pop(
"right_wrist_pose")
param_dict[key] = {
**body_dict,
**head_share_dict,
**left_hand_share_dict,
**right_hand_share_dict,
}
if body_only:
param_dict["moderator_weight"] = None
return param_dict
prediction_body_only = self.decode(param_dict[key],
param_type="body")
# crop
for part_name in ["head", "left_hand", "right_hand"]:
part = part_name.split("_")[-1]
points_dict = {
"smplx_kpt":
prediction_body_only["smplx_kpt"],
"trans_verts":
prediction_body_only["transformed_vertices"],
}
image_hd = torchvision.transforms.Resize(1024)(
data["body"]["image"])
cropped_image, cropped_joints_dict = self.part_from_body(
image_hd, part_name, points_dict)
data[key][part_name + "_image"] = cropped_image
# -- encode features from part crops, then fuse feature using the weight from moderator
for part_name in ["head", "left_hand", "right_hand"]:
part = part_name.split("_")[-1]
cropped_image = data[key][part_name + "_image"]
# if left hand, flip it as if it is right hand
if part_name == "left_hand":
cropped_image = torch.flip(cropped_image, dims=(-1, ))
# run part regressor
f_part = self.Encoder[part](cropped_image)
part_dict = self.decompose_code(
self.Regressor[part](f_part),
self.param_list_dict[f"{part}_list"],
)
part_share_dict = self.decompose_code(
self.Regressor[f"{part}_share"](f_part),
self.param_list_dict[f"{part}_share_list"],
)
param_dict["body_" + part_name] = {
**part_dict,
**part_share_dict
}
# moderator to assign weight, then integrate features
f_body_out, f_part_out, f_weight = self.Moderator[
f"{part}_share"](feature["body"][f"{part_name}_share"],
f_part,
work=True)
if copy_and_paste:
# copy and paste strategy always trusts the results from part
feature["body"][f"{part_name}_share"] = f_part
elif threthold and part == "hand":
# for hand, if part weight > 0.7 (very confident, then fully trust part)
part_w = f_weight[:, [1]]
part_w[part_w > 0.7] = 1.0
f_body_out = (feature["body"][f"{part_name}_share"] *
(1.0 - part_w) + f_part * part_w)
feature["body"][f"{part_name}_share"] = f_body_out
else:
feature["body"][f"{part_name}_share"] = f_body_out
fusion_weight[part_name] = f_weight
# save weights from moderator, that can be further used for optimization/running specific tasks on parts
param_dict["moderator_weight"] = fusion_weight
# -- predict parameters from fused body feature
# head share
head_share_dict = self.decompose_code(
self.Regressor["head" + "_share"](feature[key]["head" +
"_share"]),
self.param_list_dict["head" + "_share_list"],
)
# right hand share
right_hand_share_dict = self.decompose_code(
self.Regressor["hand" + "_share"](
feature[key]["right_hand" + "_share"]),
self.param_list_dict["hand" + "_share_list"],
)
# left hand share
left_hand_share_dict = self.decompose_code(
self.Regressor["hand" + "_share"](
feature[key]["left_hand" + "_share"]),
self.param_list_dict["hand" + "_share_list"],
)
# change the dict name from right to left
left_hand_share_dict[
"left_hand_pose"] = left_hand_share_dict.pop(
"right_hand_pose")
left_hand_share_dict[
"left_wrist_pose"] = left_hand_share_dict.pop(
"right_wrist_pose")
param_dict["body"] = {
**body_dict,
**head_share_dict,
**left_hand_share_dict,
**right_hand_share_dict,
}
# copy tex param from head param dict to body param dict
param_dict["body"]["tex"] = param_dict["body_head"]["tex"]
param_dict["body"]["light"] = param_dict["body_head"]["light"]
if keep_local:
# for local change that will not affect whole body and produce unnatral pose, trust part
param_dict[key]["exp"] = param_dict["body_head"]["exp"]
param_dict[key]["right_hand_pose"] = param_dict[
"body_right_hand"]["right_hand_pose"]
param_dict[key]["left_hand_pose"] = param_dict[
"body_left_hand"]["right_hand_pose"]
return param_dict
def convert_pose(self, param_dict, param_type):
"""Convert pose parameters to rotation matrix
Args:
param_dict: smplx parameters
param_type: should be one of body/head/hand
Returns:
param_dict: smplx parameters
"""
assert param_type in ["body", "head", "hand"]
# convert pose representations: the output from network are continous repre or axis angle,
# while the input pose for smplx need to be rotation matrix
for key in param_dict:
if "pose" in key and "jaw" not in key:
param_dict[key] = converter.batch_cont2matrix(param_dict[key])
if param_type == "body" or param_type == "head":
param_dict["jaw_pose"] = converter.batch_euler2matrix(
param_dict["jaw_pose"])[:, None, :, :]
# complement params if it's not in given param dict
if param_type == "head":
batch_size = param_dict["shape"].shape[0]
param_dict["abs_head_pose"] = param_dict["head_pose"].clone()
param_dict["global_pose"] = param_dict["head_pose"]
param_dict["partbody_pose"] = self.smplx.body_pose.unsqueeze(
0).expand(
batch_size, -1, -1,
-1)[:, :self.param_list_dict["body_list"]["partbody_pose"]]
param_dict["neck_pose"] = self.smplx.neck_pose.unsqueeze(0).expand(
batch_size, -1, -1, -1)
param_dict["left_wrist_pose"] = self.smplx.neck_pose.unsqueeze(
0).expand(batch_size, -1, -1, -1)
param_dict["left_hand_pose"] = self.smplx.left_hand_pose.unsqueeze(
0).expand(batch_size, -1, -1, -1)
param_dict["right_wrist_pose"] = self.smplx.neck_pose.unsqueeze(
0).expand(batch_size, -1, -1, -1)
param_dict[
"right_hand_pose"] = self.smplx.right_hand_pose.unsqueeze(
0).expand(batch_size, -1, -1, -1)
elif param_type == "hand":
batch_size = param_dict["right_hand_pose"].shape[0]
param_dict["abs_right_wrist_pose"] = param_dict[
"right_wrist_pose"].clone()
dtype = param_dict["right_hand_pose"].dtype
device = param_dict["right_hand_pose"].device
x_180_pose = (torch.eye(3, dtype=dtype,
device=device).unsqueeze(0).repeat(
1, 1, 1))
x_180_pose[0, 2, 2] = -1.0
x_180_pose[0, 1, 1] = -1.0
param_dict["global_pose"] = x_180_pose.unsqueeze(0).expand(
batch_size, -1, -1, -1)
param_dict["shape"] = self.smplx.shape_params.expand(
batch_size, -1)
param_dict["exp"] = self.smplx.expression_params.expand(
batch_size, -1)
param_dict["head_pose"] = self.smplx.head_pose.unsqueeze(0).expand(
batch_size, -1, -1, -1)
param_dict["neck_pose"] = self.smplx.neck_pose.unsqueeze(0).expand(
batch_size, -1, -1, -1)
param_dict["jaw_pose"] = self.smplx.jaw_pose.unsqueeze(0).expand(
batch_size, -1, -1, -1)
param_dict["partbody_pose"] = self.smplx.body_pose.unsqueeze(
0).expand(
batch_size, -1, -1,
-1)[:, :self.param_list_dict["body_list"]["partbody_pose"]]
param_dict["left_wrist_pose"] = self.smplx.neck_pose.unsqueeze(
0).expand(batch_size, -1, -1, -1)
param_dict["left_hand_pose"] = self.smplx.left_hand_pose.unsqueeze(
0).expand(batch_size, -1, -1, -1)
elif param_type == "body":
# the predcition from the head and hand share regressor is always absolute pose
batch_size = param_dict["shape"].shape[0]
param_dict["abs_head_pose"] = param_dict["head_pose"].clone()
param_dict["abs_right_wrist_pose"] = param_dict[
"right_wrist_pose"].clone()
param_dict["abs_left_wrist_pose"] = param_dict[
"left_wrist_pose"].clone()
# the body-hand share regressor is working for right hand
# so we assume body network get the flipped feature for the left hand. then get the parameters
# then we need to flip it back to left, which matches the input left hand
param_dict["left_wrist_pose"] = util.flip_pose(
param_dict["left_wrist_pose"])
param_dict["left_hand_pose"] = util.flip_pose(
param_dict["left_hand_pose"])
else:
exit()
return param_dict
def decode(self, param_dict, param_type):
"""Decode model parameters to smplx vertices & joints & texture
Args:
param_dict: smplx parameters
param_type: should be one of body/head/hand
Returns:
predictions: smplx predictions
"""
if "jaw_pose" in param_dict.keys() and len(
param_dict["jaw_pose"].shape) == 2:
self.convert_pose(param_dict, param_type)
elif param_dict["right_wrist_pose"].shape[-1] == 6:
self.convert_pose(param_dict, param_type)
# concatenate body pose
partbody_pose = param_dict["partbody_pose"]
param_dict["body_pose"] = torch.cat(
[
partbody_pose[:, :11],
param_dict["neck_pose"],
partbody_pose[:, 11:11 + 2],
param_dict["head_pose"],
partbody_pose[:, 13:13 + 4],
param_dict["left_wrist_pose"],
param_dict["right_wrist_pose"],
],
dim=1,
)
# change absolute head&hand pose to relative pose according to rest body pose
if param_type == "head" or param_type == "body":
param_dict["body_pose"] = self.smplx.pose_abs2rel(
param_dict["global_pose"],
param_dict["body_pose"],
abs_joint="head")
if param_type == "hand" or param_type == "body":
param_dict["body_pose"] = self.smplx.pose_abs2rel(
param_dict["global_pose"],
param_dict["body_pose"],
abs_joint="left_wrist",
)
param_dict["body_pose"] = self.smplx.pose_abs2rel(
param_dict["global_pose"],
param_dict["body_pose"],
abs_joint="right_wrist",
)
if self.cfg.model.check_pose:
# check if pose is natural (relative rotation), if not, set relative to 0 (especially for head pose)
# xyz: pitch(positive for looking down), yaw(positive for looking left), roll(rolling chin to left)
for pose_ind in [14]: # head [15-1, 20-1, 21-1]:
curr_pose = param_dict["body_pose"][:, pose_ind]
euler_pose = converter._compute_euler_from_matrix(curr_pose)
for i, max_angle in enumerate([20, 70, 10]):
euler_pose_curr = euler_pose[:, i]
euler_pose_curr[euler_pose_curr != torch.clamp(
euler_pose_curr,
min=-max_angle * np.pi / 180,
max=max_angle * np.pi / 180,
)] = 0.0
param_dict[
"body_pose"][:, pose_ind] = converter.batch_euler2matrix(
euler_pose)
# SMPLX
verts, landmarks, joints = self.smplx(
shape_params=param_dict["shape"],
expression_params=param_dict["exp"],
global_pose=param_dict["global_pose"],
body_pose=param_dict["body_pose"],
jaw_pose=param_dict["jaw_pose"],
left_hand_pose=param_dict["left_hand_pose"],
right_hand_pose=param_dict["right_hand_pose"],
)
smplx_kpt3d = joints.clone()
# projection
cam = param_dict[param_type + "_cam"]
trans_verts = util.batch_orth_proj(verts, cam)
predicted_landmarks = util.batch_orth_proj(landmarks, cam)[:, :, :2]
predicted_joints = util.batch_orth_proj(joints, cam)[:, :, :2]
prediction = {
"vertices": verts,
"transformed_vertices": trans_verts,
"face_kpt": predicted_landmarks,
"smplx_kpt": predicted_joints,
"smplx_kpt3d": smplx_kpt3d,
"joints": joints,
"cam": param_dict[param_type + "_cam"],
}
# change the order of face keypoints, to be the same as "standard" 68 keypoints
prediction["face_kpt"] = torch.cat(
[prediction["face_kpt"][:, -17:], prediction["face_kpt"][:, :-17]],
dim=1)
prediction.update(param_dict)
return prediction
def decode_Tpose(self, param_dict):
"""return body mesh in T pose, support body and head param dict only"""
verts, _, _ = self.smplx(
shape_params=param_dict["shape"],
expression_params=param_dict["exp"],
jaw_pose=param_dict["jaw_pose"],
)
return verts