|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import trimesh |
|
import numpy as np |
|
import math |
|
from scipy.special import sph_harm |
|
import argparse |
|
from tqdm import tqdm |
|
from trimesh.util import bounds_tree |
|
|
|
|
|
def factratio(N, D): |
|
if N >= D: |
|
prod = 1.0 |
|
for i in range(D + 1, N + 1): |
|
prod *= i |
|
return prod |
|
else: |
|
prod = 1.0 |
|
for i in range(N + 1, D + 1): |
|
prod *= i |
|
return 1.0 / prod |
|
|
|
|
|
def KVal(M, L): |
|
return math.sqrt(((2 * L + 1) / (4 * math.pi)) * (factratio(L - M, L + M))) |
|
|
|
|
|
def AssociatedLegendre(M, L, x): |
|
if M < 0 or M > L or np.max(np.abs(x)) > 1.0: |
|
return np.zeros_like(x) |
|
|
|
pmm = np.ones_like(x) |
|
if M > 0: |
|
somx2 = np.sqrt((1.0 + x) * (1.0 - x)) |
|
fact = 1.0 |
|
for i in range(1, M + 1): |
|
pmm = -pmm * fact * somx2 |
|
fact = fact + 2 |
|
|
|
if L == M: |
|
return pmm |
|
else: |
|
pmmp1 = x * (2 * M + 1) * pmm |
|
if L == M + 1: |
|
return pmmp1 |
|
else: |
|
pll = np.zeros_like(x) |
|
for i in range(M + 2, L + 1): |
|
pll = (x * (2 * i - 1) * pmmp1 - (i + M - 1) * pmm) / (i - M) |
|
pmm = pmmp1 |
|
pmmp1 = pll |
|
return pll |
|
|
|
|
|
def SphericalHarmonic(M, L, theta, phi): |
|
if M > 0: |
|
return math.sqrt(2.0) * KVal(M, L) * np.cos( |
|
M * phi) * AssociatedLegendre(M, L, np.cos(theta)) |
|
elif M < 0: |
|
return math.sqrt(2.0) * KVal(-M, L) * np.sin( |
|
-M * phi) * AssociatedLegendre(-M, L, np.cos(theta)) |
|
else: |
|
return KVal(0, L) * AssociatedLegendre(0, L, np.cos(theta)) |
|
|
|
|
|
def save_obj(mesh_path, verts): |
|
file = open(mesh_path, 'w') |
|
for v in verts: |
|
file.write('v %.4f %.4f %.4f\n' % (v[0], v[1], v[2])) |
|
file.close() |
|
|
|
|
|
def sampleSphericalDirections(n): |
|
xv = np.random.rand(n, n) |
|
yv = np.random.rand(n, n) |
|
theta = np.arccos(1 - 2 * xv) |
|
phi = 2.0 * math.pi * yv |
|
|
|
phi = phi.reshape(-1) |
|
theta = theta.reshape(-1) |
|
|
|
vx = -np.sin(theta) * np.cos(phi) |
|
vy = -np.sin(theta) * np.sin(phi) |
|
vz = np.cos(theta) |
|
return np.stack([vx, vy, vz], 1), phi, theta |
|
|
|
|
|
def getSHCoeffs(order, phi, theta): |
|
shs = [] |
|
for n in range(0, order + 1): |
|
for m in range(-n, n + 1): |
|
s = SphericalHarmonic(m, n, theta, phi) |
|
shs.append(s) |
|
|
|
return np.stack(shs, 1) |
|
|
|
|
|
def computePRT(mesh_path, scale, n, order): |
|
|
|
prt_dir = os.path.join(os.path.dirname(mesh_path), "prt") |
|
bounce_path = os.path.join(prt_dir, "bounce.npy") |
|
face_path = os.path.join(prt_dir, "face.npy") |
|
|
|
os.makedirs(prt_dir, exist_ok=True) |
|
|
|
PRT = None |
|
F = None |
|
|
|
if os.path.exists(bounce_path) and os.path.exists(face_path): |
|
|
|
PRT = np.load(bounce_path) |
|
F = np.load(face_path) |
|
|
|
else: |
|
|
|
mesh = trimesh.load(mesh_path, |
|
skip_materials=True, |
|
process=False, |
|
maintain_order=True) |
|
mesh.vertices *= scale |
|
|
|
vectors_orig, phi, theta = sampleSphericalDirections(n) |
|
SH_orig = getSHCoeffs(order, phi, theta) |
|
|
|
w = 4.0 * math.pi / (n * n) |
|
|
|
origins = mesh.vertices |
|
normals = mesh.vertex_normals |
|
n_v = origins.shape[0] |
|
|
|
origins = np.repeat(origins[:, None], n, axis=1).reshape(-1, 3) |
|
normals = np.repeat(normals[:, None], n, axis=1).reshape(-1, 3) |
|
PRT_all = None |
|
for i in range(n): |
|
SH = np.repeat(SH_orig[None, (i * n):((i + 1) * n)], n_v, |
|
axis=0).reshape(-1, SH_orig.shape[1]) |
|
vectors = np.repeat(vectors_orig[None, (i * n):((i + 1) * n)], |
|
n_v, |
|
axis=0).reshape(-1, 3) |
|
|
|
dots = (vectors * normals).sum(1) |
|
front = (dots > 0.0) |
|
|
|
delta = 1e-3 * min(mesh.bounding_box.extents) |
|
|
|
hits = mesh.ray.intersects_any(origins + delta * normals, vectors) |
|
nohits = np.logical_and(front, np.logical_not(hits)) |
|
|
|
PRT = (nohits.astype(np.float32) * dots)[:, None] * SH |
|
|
|
if PRT_all is not None: |
|
PRT_all += (PRT.reshape(-1, n, SH.shape[1]).sum(1)) |
|
else: |
|
PRT_all = (PRT.reshape(-1, n, SH.shape[1]).sum(1)) |
|
|
|
PRT = w * PRT_all |
|
F = mesh.faces |
|
|
|
np.save(bounce_path, PRT) |
|
np.save(face_path, F) |
|
|
|
|
|
|
|
|
|
return PRT, F |
|
|
|
|
|
def testPRT(obj_path, n=40): |
|
|
|
os.makedirs(os.path.join(os.path.dirname(obj_path), |
|
f'../bounce/{os.path.basename(obj_path)[:-4]}'), |
|
exist_ok=True) |
|
|
|
PRT, F = computePRT(obj_path, n, 2) |
|
np.savetxt( |
|
os.path.join(os.path.dirname(obj_path), |
|
f'../bounce/{os.path.basename(obj_path)[:-4]}', |
|
'bounce.npy'), PRT) |
|
np.save( |
|
os.path.join(os.path.dirname(obj_path), |
|
f'../bounce/{os.path.basename(obj_path)[:-4]}', |
|
'face.npy'), F) |
|
|