|
|
|
import numpy as np |
|
import torch |
|
from torch.utils.data import Dataset |
|
from PIL import Image |
|
import PIL |
|
from typing import Tuple, Optional |
|
import random |
|
import os |
|
from icecream import ic |
|
import cv2 |
|
|
|
|
|
def add_margin(pil_img, color=0, size=256): |
|
width, height = pil_img.size |
|
result = Image.new(pil_img.mode, (size, size), color) |
|
result.paste(pil_img, ((size - width) // 2, (size - height) // 2)) |
|
return result |
|
|
|
def scale_and_place_object(image, scale_factor): |
|
assert np.shape(image)[-1]==4 |
|
|
|
|
|
alpha_channel = image[:, :, 3] |
|
|
|
|
|
coords = cv2.findNonZero(alpha_channel) |
|
x, y, width, height = cv2.boundingRect(coords) |
|
|
|
|
|
original_height, original_width = image.shape[:2] |
|
|
|
if width > height: |
|
size = width |
|
original_size = original_width |
|
else: |
|
size = height |
|
original_size = original_height |
|
|
|
scale_factor = min(scale_factor, size / (original_size+0.0)) |
|
|
|
new_size = scale_factor * original_size |
|
scale_factor = new_size / size |
|
|
|
|
|
new_width = int(width * scale_factor) |
|
new_height = int(height * scale_factor) |
|
|
|
center_x = original_width // 2 |
|
center_y = original_height // 2 |
|
|
|
paste_x = center_x - (new_width // 2) |
|
paste_y = center_y - (new_height // 2) |
|
|
|
|
|
rescaled_object = cv2.resize(image[y:y+height, x:x+width], (new_width, new_height)) |
|
|
|
|
|
new_image = np.zeros((original_height, original_width, 4), dtype=np.uint8) |
|
|
|
new_image[paste_y:paste_y + new_height, paste_x:paste_x + new_width] = rescaled_object |
|
|
|
return new_image |
|
|
|
class SingleImageDataset(Dataset): |
|
def __init__(self, |
|
root_dir: str, |
|
num_views: int, |
|
img_wh: Tuple[int, int], |
|
bg_color: str, |
|
crop_size: int = 224, |
|
single_image: Optional[PIL.Image.Image] = None, |
|
num_validation_samples: Optional[int] = None, |
|
filepaths: Optional[list] = None, |
|
cond_type: Optional[str] = None, |
|
prompt_embeds_path: Optional[str] = None, |
|
gt_path: Optional[str] = None, |
|
margin_size: Optional[int] = 0, |
|
smpl_folder: Optional[str] = None, |
|
) -> None: |
|
"""Create a dataset from a folder of images. |
|
If you pass in a root directory it will be searched for images |
|
ending in ext (ext can be a list) |
|
""" |
|
self.root_dir = root_dir |
|
self.num_views = num_views |
|
self.img_wh = img_wh |
|
self.crop_size = crop_size |
|
self.bg_color = bg_color |
|
self.cond_type = cond_type |
|
self.gt_path = gt_path |
|
|
|
|
|
if single_image is None: |
|
file_list = sorted(os.listdir(self.root_dir)) |
|
|
|
self.file_list = [file for file in file_list if file.endswith(('.png', '.jpg', '.webp'))] |
|
else: |
|
self.file_list = None |
|
|
|
|
|
self.all_images = [] |
|
self.all_alphas = [] |
|
self.all_faces = [] |
|
|
|
self.all_face_embeddings = [] |
|
bg_color = self.get_bg_color() |
|
|
|
if single_image is not None: |
|
face_info = self.get_face_info(single_image) |
|
image, alpha = self.load_image(None, bg_color, return_type='pt', Imagefile=single_image) |
|
self.all_images.append(image) |
|
self.all_alphas.append(alpha) |
|
self.all_faces.append(self.process_face(f'{self.root_dir}/{single_image}', face_info['bbox'].astype(np.int32), bg_color)) |
|
else: |
|
for file in self.file_list: |
|
print(os.path.join(self.root_dir, file)) |
|
image, alpha = self.load_image(os.path.join(self.root_dir, file), bg_color, return_type='pt') |
|
self.all_images.append(image) |
|
self.all_alphas.append(alpha) |
|
|
|
face, _ = self.load_face(os.path.join(self.root_dir, file), bg_color, return_type='pt') |
|
self.all_faces.append(face) |
|
|
|
self.all_images = self.all_images[:num_validation_samples] |
|
self.all_alphas = self.all_alphas[:num_validation_samples] |
|
self.all_faces = self.all_faces[:num_validation_samples] |
|
|
|
ic(len(self.all_images)) |
|
|
|
try: |
|
normal_prompt_embedding = torch.load(f'{prompt_embeds_path}/normal_embeds.pt') |
|
color_prompt_embedding = torch.load(f'{prompt_embeds_path}/clr_embeds.pt') |
|
self.normal_text_embeds = normal_prompt_embedding |
|
self.color_text_embeds = color_prompt_embedding |
|
except: |
|
self.color_text_embeds = torch.load(f'{prompt_embeds_path}/embeds.pt') |
|
self.normal_text_embeds = None |
|
|
|
def __len__(self): |
|
return len(self.all_images) |
|
|
|
def get_face_info(self, file): |
|
file_name = file.split('.')[0] |
|
face_info = np.load(f'{self.root_dir}/{file_name}_face_info.npy', allow_pickle=True).item() |
|
return face_info |
|
|
|
|
|
def get_bg_color(self): |
|
if self.bg_color == 'white': |
|
bg_color = np.array([1., 1., 1.], dtype=np.float32) |
|
elif self.bg_color == 'black': |
|
bg_color = np.array([0., 0., 0.], dtype=np.float32) |
|
elif self.bg_color == 'gray': |
|
bg_color = np.array([0.5, 0.5, 0.5], dtype=np.float32) |
|
elif self.bg_color == 'random': |
|
bg_color = np.random.rand(3) |
|
elif isinstance(self.bg_color, float): |
|
bg_color = np.array([self.bg_color] * 3, dtype=np.float32) |
|
else: |
|
raise NotImplementedError |
|
return bg_color |
|
|
|
|
|
def load_image(self, img_path, bg_color, return_type='np', Imagefile=None): |
|
|
|
if Imagefile is None: |
|
image_input = Image.open(img_path) |
|
else: |
|
image_input = Imagefile |
|
image_size = self.img_wh[0] |
|
|
|
if self.crop_size!=-1: |
|
alpha_np = np.asarray(image_input)[:, :, 3] |
|
coords = np.stack(np.nonzero(alpha_np), 1)[:, (1, 0)] |
|
min_x, min_y = np.min(coords, 0) |
|
max_x, max_y = np.max(coords, 0) |
|
ref_img_ = image_input.crop((min_x, min_y, max_x, max_y)) |
|
h, w = ref_img_.height, ref_img_.width |
|
scale = self.crop_size / max(h, w) |
|
h_, w_ = int(scale * h), int(scale * w) |
|
ref_img_ = ref_img_.resize((w_, h_)) |
|
image_input = add_margin(ref_img_, size=image_size) |
|
else: |
|
image_input = add_margin(image_input, size=max(image_input.height, image_input.width)) |
|
image_input = image_input.resize((image_size, image_size)) |
|
|
|
|
|
img = np.array(image_input) |
|
img = img.astype(np.float32) / 255. |
|
assert img.shape[-1] == 4 |
|
|
|
alpha = img[...,3:4] |
|
img = img[...,:3] * alpha + bg_color * (1 - alpha) |
|
|
|
if return_type == "np": |
|
pass |
|
elif return_type == "pt": |
|
img = torch.from_numpy(img) |
|
alpha = torch.from_numpy(alpha) |
|
else: |
|
raise NotImplementedError |
|
|
|
return img, alpha |
|
|
|
def load_face(self, img_path, bg_color, return_type='np', Imagefile=None): |
|
|
|
if Imagefile is None: |
|
image_input = Image.open(img_path) |
|
else: |
|
image_input = Imagefile |
|
image_size = self.img_wh[0] |
|
|
|
if self.crop_size!=-1: |
|
alpha_np = np.asarray(image_input)[:, :, 3] |
|
coords = np.stack(np.nonzero(alpha_np), 1)[:, (1, 0)] |
|
min_x, min_y = np.min(coords, 0) |
|
max_x, max_y = np.max(coords, 0) |
|
ref_img_ = image_input.crop((min_x, min_y, max_x, max_y)) |
|
h, w = ref_img_.height, ref_img_.width |
|
scale = self.crop_size / max(h, w) |
|
h_, w_ = int(scale * h), int(scale * w) |
|
ref_img_ = ref_img_.resize((w_, h_)) |
|
image_input = add_margin(ref_img_, size=image_size) |
|
else: |
|
image_input = add_margin(image_input, size=max(image_input.height, image_input.width)) |
|
image_input = image_input.resize((image_size, image_size)) |
|
|
|
image_input = image_input.crop((256, 0, 512, 256)).resize((self.img_wh[0], self.img_wh[1])) |
|
|
|
|
|
img = np.array(image_input) |
|
img = img.astype(np.float32) / 255. |
|
assert img.shape[-1] == 4 |
|
|
|
alpha = img[...,3:4] |
|
img = img[...,:3] * alpha + bg_color * (1 - alpha) |
|
|
|
if return_type == "np": |
|
pass |
|
elif return_type == "pt": |
|
img = torch.from_numpy(img) |
|
alpha = torch.from_numpy(alpha) |
|
else: |
|
raise NotImplementedError |
|
|
|
return img, alpha |
|
|
|
def __len__(self): |
|
return len(self.all_images) |
|
|
|
def process_face(self, img_path, bbox, bg_color, normal_path=None, w2c=None, h=512, w=512): |
|
image = Image.open(img_path) |
|
bbox_w, bbox_h = bbox[2] - bbox[0], bbox[3] - bbox[1] |
|
if bbox_w > bbox_h: |
|
bbox[1] -= (bbox_w - bbox_h) // 2 |
|
bbox[3] += (bbox_w - bbox_h) // 2 |
|
else: |
|
bbox[0] -= (bbox_h - bbox_w) // 2 |
|
bbox[2] += (bbox_h - bbox_w) // 2 |
|
bbox[0:2] -= 20 |
|
bbox[2:4] += 20 |
|
image = image.crop(bbox) |
|
|
|
image = image.resize((w, h)) |
|
image = np.array(image) / 255. |
|
img, alpha = image[:, :, :3], image[:, :, 3:4] |
|
img = img * alpha + bg_color * (1 - alpha) |
|
|
|
padded_img = np.full((self.img_wh[0], self.img_wh[1], 3), bg_color, dtype=np.float32) |
|
dx = (self.img_wh[0] - w) // 2 |
|
dy = (self.img_wh[1] - h) // 2 |
|
padded_img[dy:dy+h, dx:dx+w] = img |
|
padded_img = torch.from_numpy(padded_img).permute(2,0,1) |
|
|
|
return padded_img |
|
|
|
def __getitem__(self, index): |
|
image = self.all_images[index%len(self.all_images)] |
|
|
|
if self.file_list is not None: |
|
filename = self.file_list[index%len(self.all_images)].replace(".png", "") |
|
else: |
|
filename = 'null' |
|
img_tensors_in = [ |
|
image.permute(2, 0, 1) |
|
] * (self.num_views-1) + [ |
|
self.all_faces[index%len(self.all_images)].permute(2, 0, 1) |
|
] |
|
|
|
|
|
img_tensors_in = torch.stack(img_tensors_in, dim=0).float() |
|
|
|
normal_prompt_embeddings = self.normal_text_embeds if hasattr(self, 'normal_text_embeds') else None |
|
color_prompt_embeddings = self.color_text_embeds if hasattr(self, 'color_text_embeds') else None |
|
|
|
if normal_prompt_embeddings is None: |
|
out = { |
|
'imgs_in': img_tensors_in, |
|
'color_prompt_embeddings': color_prompt_embeddings, |
|
'filename': filename, |
|
} |
|
else: |
|
out = { |
|
'imgs_in': img_tensors_in, |
|
'normal_prompt_embeddings': normal_prompt_embeddings, |
|
'color_prompt_embeddings': color_prompt_embeddings, |
|
'filename': filename, |
|
} |
|
return out |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
from torch.utils.data import DataLoader |
|
from torchvision.utils import make_grid |
|
from PIL import ImageDraw, ImageFont |
|
def draw_text(img, text, pos, color=(128, 128, 128)): |
|
draw = ImageDraw.Draw(img) |
|
|
|
font = ImageFont.load_default() |
|
font = font.font_variant(size=10) |
|
draw.text(pos, text, color, font=font) |
|
return img |
|
random.seed(11) |
|
test_params = dict( |
|
root_dir='../../evaluate', |
|
bg_color='white', |
|
img_wh=(768, 768), |
|
prompt_embeds_path='fixed_prompt_embeds_7view', |
|
num_views=5, |
|
crop_size=740, |
|
) |
|
train_dataset = SingleImageDataset(**test_params) |
|
data_loader = DataLoader(train_dataset, batch_size=1, shuffle=True, num_workers=0) |
|
|
|
batch = train_dataset.__getitem__(0) |
|
imgs = [] |
|
obj_name = 'test_case' |
|
imgs_in = batch['imgs_in'] |
|
imgs_vis = torch.cat([imgs_in[0:1], imgs_in[-1:]], 0) |
|
img_vis = make_grid(imgs_vis, nrow=2).permute(1, 2,0) |
|
img_vis = (img_vis.numpy() * 255).astype(np.uint8) |
|
img_vis = Image.fromarray(img_vis) |
|
img_vis = draw_text(img_vis, obj_name, (5, 1)) |
|
img_vis = torch.from_numpy(np.array(img_vis)).permute(2, 0, 1) / 255. |
|
imgs.append(img_vis) |
|
imgs = torch.stack(imgs, dim=0) |
|
img_grid = make_grid(imgs, nrow=4, padding=0) |
|
img_grid = img_grid.permute(1, 2, 0).numpy() |
|
img_grid = (img_grid * 255).astype(np.uint8) |
|
img_grid = Image.fromarray(img_grid) |
|
img_grid.save(f'../../debug/{obj_name}.png') |
|
|