PSHuman / utils /func.py
fffiloni's picture
Migrated from GitHub
2252f3d verified
import torch
import io
import numpy as np
from pathlib import Path
import re
import trimesh
import imageio
import os
from scipy.spatial.transform import Rotation as R
def to_numpy(*args):
def convert(a):
if isinstance(a,torch.Tensor):
return a.detach().cpu().numpy()
assert a is None or isinstance(a,np.ndarray)
return a
return convert(args[0]) if len(args)==1 else tuple(convert(a) for a in args)
def save_obj(
vertices,
faces,
filename:Path,
colors=None,
):
filename = Path(filename)
bytes_io = io.BytesIO()
if colors is not None:
vertices = torch.cat((vertices, colors),dim=-1)
np.savetxt(bytes_io, vertices.detach().cpu().numpy(), 'v %.4f %.4f %.4f %.4f %.4f %.4f')
else:
np.savetxt(bytes_io, vertices.detach().cpu().numpy(), 'v %.4f %.4f %.4f')
np.savetxt(bytes_io, faces.cpu().numpy() + 1, 'f %d %d %d') #1-based indexing
obj_path = filename.with_suffix('.obj')
with open(obj_path, 'w') as file:
file.write(bytes_io.getvalue().decode('UTF-8'))
def save_glb(
filename,
v_pos,
t_pos_idx,
v_nrm=None,
v_tex=None,
t_tex_idx=None,
v_rgb=None,
) -> str:
mesh = trimesh.Trimesh(
vertices=v_pos, faces=t_pos_idx, vertex_normals=v_nrm, vertex_colors=v_rgb
)
# not tested
if v_tex is not None:
mesh.visual = trimesh.visual.TextureVisuals(uv=v_tex)
mesh.export(filename)
def load_obj(
filename:Path,
device='cuda',
load_color=False
) -> tuple[torch.Tensor,torch.Tensor]:
filename = Path(filename)
obj_path = filename.with_suffix('.obj')
with open(obj_path) as file:
obj_text = file.read()
num = r"([0-9\.\-eE]+)"
if load_color:
v = re.findall(f"(v {num} {num} {num} {num} {num} {num})",obj_text)
else:
v = re.findall(f"(v {num} {num} {num})",obj_text)
vertices = np.array(v)[:,1:].astype(np.float32)
all_faces = []
f = re.findall(f"(f {num} {num} {num})",obj_text)
if f:
all_faces.append(np.array(f)[:,1:].astype(np.int32).reshape(-1,3,1)[...,:1])
f = re.findall(f"(f {num}/{num} {num}/{num} {num}/{num})",obj_text)
if f:
all_faces.append(np.array(f)[:,1:].astype(np.int32).reshape(-1,3,2)[...,:2])
f = re.findall(f"(f {num}/{num}/{num} {num}/{num}/{num} {num}/{num}/{num})",obj_text)
if f:
all_faces.append(np.array(f)[:,1:].astype(np.int32).reshape(-1,3,3)[...,:2])
f = re.findall(f"(f {num}//{num} {num}//{num} {num}//{num})",obj_text)
if f:
all_faces.append(np.array(f)[:,1:].astype(np.int32).reshape(-1,3,2)[...,:1])
all_faces = np.concatenate(all_faces,axis=0)
all_faces -= 1 #1-based indexing
faces = all_faces[:,:,0]
vertices = torch.tensor(vertices,dtype=torch.float32,device=device)
faces = torch.tensor(faces,dtype=torch.long,device=device)
return vertices,faces
def save_ply(
filename:Path,
vertices:torch.Tensor, #V,3
faces:torch.Tensor, #F,3
vertex_colors:torch.Tensor=None, #V,3
vertex_normals:torch.Tensor=None, #V,3
):
filename = Path(filename).with_suffix('.ply')
vertices,faces,vertex_colors = to_numpy(vertices,faces,vertex_colors)
assert np.all(np.isfinite(vertices)) and faces.min()==0 and faces.max()==vertices.shape[0]-1
header = 'ply\nformat ascii 1.0\n'
header += 'element vertex ' + str(vertices.shape[0]) + '\n'
header += 'property double x\n'
header += 'property double y\n'
header += 'property double z\n'
if vertex_normals is not None:
header += 'property double nx\n'
header += 'property double ny\n'
header += 'property double nz\n'
if vertex_colors is not None:
assert vertex_colors.shape[0] == vertices.shape[0]
color = (vertex_colors*255).astype(np.uint8)
header += 'property uchar red\n'
header += 'property uchar green\n'
header += 'property uchar blue\n'
header += 'element face ' + str(faces.shape[0]) + '\n'
header += 'property list int int vertex_indices\n'
header += 'end_header\n'
with open(filename, 'w') as file:
file.write(header)
for i in range(vertices.shape[0]):
s = f"{vertices[i,0]} {vertices[i,1]} {vertices[i,2]}"
if vertex_normals is not None:
s += f" {vertex_normals[i,0]} {vertex_normals[i,1]} {vertex_normals[i,2]}"
if vertex_colors is not None:
s += f" {color[i,0]:03d} {color[i,1]:03d} {color[i,2]:03d}"
file.write(s+'\n')
for i in range(faces.shape[0]):
file.write(f"3 {faces[i,0]} {faces[i,1]} {faces[i,2]}\n")
full_verts = vertices[faces] #F,3,3
def save_images(
images:torch.Tensor, #B,H,W,CH
dir:Path,
):
dir = Path(dir)
dir.mkdir(parents=True,exist_ok=True)
if images.shape[-1]==1:
images = images.repeat(1,1,1,3)
for i in range(images.shape[0]):
imageio.imwrite(dir/f'{i:02d}.png',(images.detach()[i,:,:,:3]*255).clamp(max=255).type(torch.uint8).cpu().numpy())
def normalize_scene(vertices):
bbox_min, bbox_max = vertices.min(axis=0)[0], vertices.max(axis=0)[0]
offset = -(bbox_min + bbox_max) / 2
vertices = vertices + offset
# print(offset)
dxyz = bbox_max - bbox_min
dist = torch.sqrt(dxyz[0]**2+ dxyz[1]**2+dxyz[2]**2)
scale = 1. / dist
# print(scale)
vertices *= scale
return vertices
def normalize_vertices(
vertices:torch.Tensor, #V,3
):
"""shift and resize mesh to fit into a unit sphere"""
vertices -= (vertices.min(dim=0)[0] + vertices.max(dim=0)[0]) / 2
vertices /= torch.norm(vertices, dim=-1).max()
return vertices
def laplacian(
num_verts:int,
edges: torch.Tensor #E,2
) -> torch.Tensor: #sparse V,V
"""create sparse Laplacian matrix"""
V = num_verts
E = edges.shape[0]
#adjacency matrix,
idx = torch.cat([edges, edges.fliplr()], dim=0).type(torch.long).T # (2, 2*E)
ones = torch.ones(2*E, dtype=torch.float32, device=edges.device)
A = torch.sparse.FloatTensor(idx, ones, (V, V))
#degree matrix
deg = torch.sparse.sum(A, dim=1).to_dense()
idx = torch.arange(V, device=edges.device)
idx = torch.stack([idx, idx], dim=0)
D = torch.sparse.FloatTensor(idx, deg, (V, V))
return D - A
def _translation(x, y, z, device):
return torch.tensor([[1., 0, 0, x],
[0, 1, 0, y],
[0, 0, 1, z],
[0, 0, 0, 1]],device=device) #4,4
def make_round_views(view_nums, scale=2., device='cuda'):
w2c = []
ortho_scale = scale/2
projection = get_ortho_projection_matrix(-ortho_scale, ortho_scale, -ortho_scale, ortho_scale, 0.1, 100)
for i in reversed(range(view_nums)):
tmp = np.eye(4)
rot = R.from_euler('xyz', [0, 360/view_nums*i-180, 0], degrees=True).as_matrix()
rot[:, 2] *= -1
tmp[:3, :3] = rot
tmp[2, 3] = -1.8
w2c.append(tmp)
w2c = torch.from_numpy(np.stack(w2c, 0)).float().to(device=device)
projection = torch.from_numpy(projection).float().to(device=device)
return w2c, projection
def make_star_views(az_degs, pol_degs, scale=2., device='cuda'):
w2c = []
ortho_scale = scale/2
projection = get_ortho_projection_matrix(-ortho_scale, ortho_scale, -ortho_scale, ortho_scale, 0.1, 100)
for pol in pol_degs:
for az in az_degs:
tmp = np.eye(4)
rot = R.from_euler('xyz', [0, az-180, 0], degrees=True).as_matrix()
rot[:, 2] *= -1
rot_z = R.from_euler('xyz', [pol, 0, 0], degrees=True).as_matrix()
rot = rot_z @ rot
tmp[:3, :3] = rot
tmp[2, 3] = -1.8
w2c.append(tmp)
w2c = torch.from_numpy(np.stack(w2c, 0)).float().to(device=device)
projection = torch.from_numpy(projection).float().to(device=device)
return w2c, projection
# def make_star_cameras(az_count,pol_count,distance:float=10.,r=None,image_size=[512,512],device='cuda'):
# if r is None:
# r = 1/distance
# A = az_count
# P = pol_count
# C = A * P
# phi = torch.arange(0,A) * (2*torch.pi/A)
# phi_rot = torch.eye(3,device=device)[None,None].expand(A,1,3,3).clone()
# phi_rot[:,0,2,2] = phi.cos()
# phi_rot[:,0,2,0] = -phi.sin()
# phi_rot[:,0,0,2] = phi.sin()
# phi_rot[:,0,0,0] = phi.cos()
# theta = torch.arange(1,P+1) * (torch.pi/(P+1)) - torch.pi/2
# theta_rot = torch.eye(3,device=device)[None,None].expand(1,P,3,3).clone()
# theta_rot[0,:,1,1] = theta.cos()
# theta_rot[0,:,1,2] = -theta.sin()
# theta_rot[0,:,2,1] = theta.sin()
# theta_rot[0,:,2,2] = theta.cos()
# mv = torch.empty((C,4,4), device=device)
# mv[:] = torch.eye(4, device=device)
# mv[:,:3,:3] = (theta_rot @ phi_rot).reshape(C,3,3)
# mv = _translation(0, 0, -distance, device) @ mv
# print(mv[:, :3, 3])
# return mv, _projection(r, device)
def get_ortho_projection_matrix(left, right, bottom, top, near, far):
projection_matrix = np.zeros((4, 4), dtype=np.float32)
projection_matrix[0, 0] = 2.0 / (right - left)
projection_matrix[1, 1] = -2.0 / (top - bottom) # add a negative sign here as the y axis is flipped in nvdiffrast output
projection_matrix[2, 2] = -2.0 / (far - near)
projection_matrix[0, 3] = -(right + left) / (right - left)
projection_matrix[1, 3] = -(top + bottom) / (top - bottom)
projection_matrix[2, 3] = -(far + near) / (far - near)
projection_matrix[3, 3] = 1.0
return projection_matrix
def _projection(r, device, l=None, t=None, b=None, n=1.0, f=50.0, flip_y=True):
if l is None:
l = -r
if t is None:
t = r
if b is None:
b = -t
p = torch.zeros([4,4],device=device)
p[0,0] = 2*n/(r-l)
p[0,2] = (r+l)/(r-l)
p[1,1] = 2*n/(t-b) * (-1 if flip_y else 1)
p[1,2] = (t+b)/(t-b)
p[2,2] = -(f+n)/(f-n)
p[2,3] = -(2*f*n)/(f-n)
p[3,2] = -1
return p #4,4
def get_perspective_projection_matrix(fov, aspect=1.0, near=0.1, far=100.0):
tan_half_fovy = torch.tan(torch.deg2rad(fov/2))
projection_matrix = torch.zeros(4, 4)
projection_matrix[0, 0] = 1 / (aspect * tan_half_fovy)
projection_matrix[1, 1] = -1 / tan_half_fovy
projection_matrix[2, 2] = -(far + near) / (far - near)
projection_matrix[2, 3] = -2 * far * near / (far - near)
projection_matrix[3, 2] = -1
def make_sparse_camera(cam_path, scale=4., views=None, device='cuda', mode='ortho'):
if mode == 'ortho':
ortho_scale = scale/2
projection = get_ortho_projection_matrix(-ortho_scale, ortho_scale, -ortho_scale, ortho_scale, 0.1, 100)
else:
npy_data = np.load(os.path.join(cam_path, f'{i:03d}.npy'), allow_pickle=True).item()
fov = npy_data['fov']
projection = get_perspective_projection_matrix(fov, aspect=1.0, near=0.1, far=100.0)
# projection = _projection(r=1/1.5, device=device, n=0.1, f=100)
# for view in ['front', 'right', 'back', 'left']:
# tmp = np.loadtxt(os.path.join(cam_path, f'{view}_RT.txt'))
# rot = tmp[:, [0, 2, 1]]
# rot[:, 2] *= -1
# tmp[:3, :3] = rot
# tmp = np.concatenate([tmp, np.array([[0, 0, 0, 1]])], axis=0)
# c2w = np.linalg.inv(tmp)
# w2c.append(np.concatenate([tmp, np.array([[0, 0, 0, 1]])], axis=0))
'''
world :
z
|
|____y
/
/
x
camera:(opencv)
z
/
/____x
|
|
y
'''
if views is None:
views = [0, 1, 2, 4, 6, 7]
w2c = []
for i in views:
npy_data = np.load(os.path.join(cam_path, f'{i:03d}.npy'), allow_pickle=True).item()
w2c_cv = npy_data['extrinsic']
w2c_cv = np.concatenate([w2c_cv, np.array([[0, 0, 0, 1]])], axis=0)
c2w_cv = np.linalg.inv(w2c_cv)
c2w_gl = c2w_cv[[1, 2, 0, 3], :] # invert world coordinate, y->x, z->y, x->z
c2w_gl[:3, 1:3] *= -1 # opencv->opengl, flip y and z
w2c_gl = np.linalg.inv(c2w_gl)
w2c.append(w2c_gl)
# special pose for test
# w2c = np.eye(4)
# rot = R.from_euler('xyz', [0, 0, 0], degrees=True).as_matrix()
# w2c[:3, :3] = rot
# w2c[2, 3] = -1.5
w2c = torch.from_numpy(np.stack(w2c, 0)).float().to(device=device)
projection = torch.from_numpy(projection).float().to(device=device)
return w2c, projection
def make_sphere(level:int=2,radius=1.,device='cuda') -> tuple[torch.Tensor,torch.Tensor]:
sphere = trimesh.creation.icosphere(subdivisions=level, radius=radius, color=np.array([0.5, 0.5, 0.5]))
vertices = torch.tensor(sphere.vertices, device=device, dtype=torch.float32) * radius
# print(vertices.shape)
# exit()
faces = torch.tensor(sphere.faces, device=device, dtype=torch.long)
colors = torch.tensor(sphere.visual.vertex_colors[..., :3], device=device, dtype=torch.float32)
return vertices, faces, colors