PSHuman / utils /saving.py
fffiloni's picture
Migrated from GitHub
2252f3d verified
import json
import os
import re
import shutil
import cv2
import imageio
import matplotlib.pyplot as plt
import numpy as np
import torch
import wandb
from matplotlib import cm
from matplotlib.colors import LinearSegmentedColormap
from PIL import Image, ImageDraw
from pytorch_lightning.loggers import WandbLogger
import lrm
from ..models.mesh import Mesh
from ..utils.typing import *
class SaverMixin:
_save_dir: Optional[str] = None
_wandb_logger: Optional[WandbLogger] = None
def set_save_dir(self, save_dir: str):
self._save_dir = save_dir
def get_save_dir(self):
if self._save_dir is None:
raise ValueError("Save dir is not set")
return self._save_dir
def convert_data(self, data):
if data is None:
return None
elif isinstance(data, np.ndarray):
return data
elif isinstance(data, torch.Tensor):
if data.dtype in [torch.float16, torch.bfloat16]:
data = data.float()
return data.detach().cpu().numpy()
elif isinstance(data, list):
return [self.convert_data(d) for d in data]
elif isinstance(data, dict):
return {k: self.convert_data(v) for k, v in data.items()}
else:
raise TypeError(
"Data must be in type numpy.ndarray, torch.Tensor, list or dict, getting",
type(data),
)
def get_save_path(self, filename):
save_path = os.path.join(self.get_save_dir(), filename)
os.makedirs(os.path.dirname(save_path), exist_ok=True)
return save_path
DEFAULT_RGB_KWARGS = {"data_format": "HWC", "data_range": (0, 1)}
DEFAULT_UV_KWARGS = {
"data_format": "HWC",
"data_range": (0, 1),
"cmap": "checkerboard",
}
DEFAULT_GRAYSCALE_KWARGS = {"data_range": None, "cmap": "jet"}
DEFAULT_GRID_KWARGS = {"align": "max"}
def get_rgb_image_(self, img, data_format, data_range, rgba=False):
img = self.convert_data(img)
assert data_format in ["CHW", "HWC"]
if data_format == "CHW":
img = img.transpose(1, 2, 0)
if img.dtype != np.uint8:
img = img.clip(min=data_range[0], max=data_range[1])
img = (
(img - data_range[0]) / (data_range[1] - data_range[0]) * 255.0
).astype(np.uint8)
nc = 4 if rgba else 3
imgs = [img[..., start : start + nc] for start in range(0, img.shape[-1], nc)]
imgs = [
img_
if img_.shape[-1] == nc
else np.concatenate(
[
img_,
np.zeros(
(img_.shape[0], img_.shape[1], nc - img_.shape[2]),
dtype=img_.dtype,
),
],
axis=-1,
)
for img_ in imgs
]
img = np.concatenate(imgs, axis=1)
if rgba:
img = cv2.cvtColor(img, cv2.COLOR_RGBA2BGRA)
else:
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
return img
def _save_rgb_image(
self,
filename,
img,
data_format,
data_range,
name: Optional[str] = None,
step: Optional[int] = None,
):
img = self.get_rgb_image_(img, data_format, data_range)
cv2.imwrite(filename, img)
if name and self._wandb_logger:
self._wandb_logger.log_image(
key=name, images=[self.get_save_path(filename)], step=step
)
def save_rgb_image(
self,
filename,
img,
data_format=DEFAULT_RGB_KWARGS["data_format"],
data_range=DEFAULT_RGB_KWARGS["data_range"],
name: Optional[str] = None,
step: Optional[int] = None,
) -> str:
save_path = self.get_save_path(filename)
self._save_rgb_image(save_path, img, data_format, data_range, name, step)
return save_path
def get_uv_image_(self, img, data_format, data_range, cmap):
img = self.convert_data(img)
assert data_format in ["CHW", "HWC"]
if data_format == "CHW":
img = img.transpose(1, 2, 0)
img = img.clip(min=data_range[0], max=data_range[1])
img = (img - data_range[0]) / (data_range[1] - data_range[0])
assert cmap in ["checkerboard", "color"]
if cmap == "checkerboard":
n_grid = 64
mask = (img * n_grid).astype(int)
mask = (mask[..., 0] + mask[..., 1]) % 2 == 0
img = np.ones((img.shape[0], img.shape[1], 3), dtype=np.uint8) * 255
img[mask] = np.array([255, 0, 255], dtype=np.uint8)
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
elif cmap == "color":
img_ = np.zeros((img.shape[0], img.shape[1], 3), dtype=np.uint8)
img_[..., 0] = (img[..., 0] * 255).astype(np.uint8)
img_[..., 1] = (img[..., 1] * 255).astype(np.uint8)
img_ = cv2.cvtColor(img_, cv2.COLOR_RGB2BGR)
img = img_
return img
def save_uv_image(
self,
filename,
img,
data_format=DEFAULT_UV_KWARGS["data_format"],
data_range=DEFAULT_UV_KWARGS["data_range"],
cmap=DEFAULT_UV_KWARGS["cmap"],
) -> str:
save_path = self.get_save_path(filename)
img = self.get_uv_image_(img, data_format, data_range, cmap)
cv2.imwrite(save_path, img)
return save_path
def get_grayscale_image_(self, img, data_range, cmap):
img = self.convert_data(img)
img = np.nan_to_num(img)
if data_range is None:
img = (img - img.min()) / (img.max() - img.min())
else:
img = img.clip(data_range[0], data_range[1])
img = (img - data_range[0]) / (data_range[1] - data_range[0])
assert cmap in [None, "jet", "magma", "spectral"]
if cmap == None:
img = (img * 255.0).astype(np.uint8)
img = np.repeat(img[..., None], 3, axis=2)
elif cmap == "jet":
img = (img * 255.0).astype(np.uint8)
img = cv2.applyColorMap(img, cv2.COLORMAP_JET)
elif cmap == "magma":
img = 1.0 - img
base = cm.get_cmap("magma")
num_bins = 256
colormap = LinearSegmentedColormap.from_list(
f"{base.name}{num_bins}", base(np.linspace(0, 1, num_bins)), num_bins
)(np.linspace(0, 1, num_bins))[:, :3]
a = np.floor(img * 255.0)
b = (a + 1).clip(max=255.0)
f = img * 255.0 - a
a = a.astype(np.uint16).clip(0, 255)
b = b.astype(np.uint16).clip(0, 255)
img = colormap[a] + (colormap[b] - colormap[a]) * f[..., None]
img = (img * 255.0).astype(np.uint8)
elif cmap == "spectral":
colormap = plt.get_cmap("Spectral")
def blend_rgba(image):
image = image[..., :3] * image[..., -1:] + (
1.0 - image[..., -1:]
) # blend A to RGB
return image
img = colormap(img)
img = blend_rgba(img)
img = (img * 255).astype(np.uint8)
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
return img
def _save_grayscale_image(
self,
filename,
img,
data_range,
cmap,
name: Optional[str] = None,
step: Optional[int] = None,
):
img = self.get_grayscale_image_(img, data_range, cmap)
cv2.imwrite(filename, img)
if name and self._wandb_logger:
self._wandb_logger.log_image(
key=name, images=[self.get_save_path(filename)], step=step
)
def save_grayscale_image(
self,
filename,
img,
data_range=DEFAULT_GRAYSCALE_KWARGS["data_range"],
cmap=DEFAULT_GRAYSCALE_KWARGS["cmap"],
name: Optional[str] = None,
step: Optional[int] = None,
) -> str:
save_path = self.get_save_path(filename)
self._save_grayscale_image(save_path, img, data_range, cmap, name, step)
return save_path
def get_image_grid_(self, imgs, align):
if isinstance(imgs[0], list):
return np.concatenate(
[self.get_image_grid_(row, align) for row in imgs], axis=0
)
cols = []
for col in imgs:
assert col["type"] in ["rgb", "uv", "grayscale"]
if col["type"] == "rgb":
rgb_kwargs = self.DEFAULT_RGB_KWARGS.copy()
rgb_kwargs.update(col["kwargs"])
cols.append(self.get_rgb_image_(col["img"], **rgb_kwargs))
elif col["type"] == "uv":
uv_kwargs = self.DEFAULT_UV_KWARGS.copy()
uv_kwargs.update(col["kwargs"])
cols.append(self.get_uv_image_(col["img"], **uv_kwargs))
elif col["type"] == "grayscale":
grayscale_kwargs = self.DEFAULT_GRAYSCALE_KWARGS.copy()
grayscale_kwargs.update(col["kwargs"])
cols.append(self.get_grayscale_image_(col["img"], **grayscale_kwargs))
if align == "max":
h = max([col.shape[0] for col in cols])
elif align == "min":
h = min([col.shape[0] for col in cols])
elif isinstance(align, int):
h = align
else:
raise ValueError(
f"Unsupported image grid align: {align}, should be min, max, or int"
)
for i in range(len(cols)):
if cols[i].shape[0] != h:
w = int(cols[i].shape[1] * h / cols[i].shape[0])
cols[i] = cv2.resize(cols[i], (w, h), interpolation=cv2.INTER_CUBIC)
return np.concatenate(cols, axis=1)
def save_image_grid(
self,
filename,
imgs,
align=DEFAULT_GRID_KWARGS["align"],
name: Optional[str] = None,
step: Optional[int] = None,
texts: Optional[List[float]] = None,
):
save_path = self.get_save_path(filename)
img = self.get_image_grid_(imgs, align=align)
if texts is not None:
img = Image.fromarray(img)
draw = ImageDraw.Draw(img)
black, white = (0, 0, 0), (255, 255, 255)
for i, text in enumerate(texts):
draw.text((2, (img.size[1] // len(texts)) * i + 1), f"{text}", white)
draw.text((0, (img.size[1] // len(texts)) * i + 1), f"{text}", white)
draw.text((2, (img.size[1] // len(texts)) * i - 1), f"{text}", white)
draw.text((0, (img.size[1] // len(texts)) * i - 1), f"{text}", white)
draw.text((1, (img.size[1] // len(texts)) * i), f"{text}", black)
img = np.asarray(img)
cv2.imwrite(save_path, img)
if name and self._wandb_logger:
self._wandb_logger.log_image(key=name, images=[save_path], step=step)
return save_path
def save_image(self, filename, img) -> str:
save_path = self.get_save_path(filename)
img = self.convert_data(img)
assert img.dtype == np.uint8 or img.dtype == np.uint16
if img.ndim == 3 and img.shape[-1] == 3:
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
elif img.ndim == 3 and img.shape[-1] == 4:
img = cv2.cvtColor(img, cv2.COLOR_RGBA2BGRA)
cv2.imwrite(save_path, img)
return save_path
def save_cubemap(self, filename, img, data_range=(0, 1), rgba=False) -> str:
save_path = self.get_save_path(filename)
img = self.convert_data(img)
assert img.ndim == 4 and img.shape[0] == 6 and img.shape[1] == img.shape[2]
imgs_full = []
for start in range(0, img.shape[-1], 3):
img_ = img[..., start : start + 3]
img_ = np.stack(
[
self.get_rgb_image_(img_[i], "HWC", data_range, rgba=rgba)
for i in range(img_.shape[0])
],
axis=0,
)
size = img_.shape[1]
placeholder = np.zeros((size, size, 3), dtype=np.float32)
img_full = np.concatenate(
[
np.concatenate(
[placeholder, img_[2], placeholder, placeholder], axis=1
),
np.concatenate([img_[1], img_[4], img_[0], img_[5]], axis=1),
np.concatenate(
[placeholder, img_[3], placeholder, placeholder], axis=1
),
],
axis=0,
)
imgs_full.append(img_full)
imgs_full = np.concatenate(imgs_full, axis=1)
cv2.imwrite(save_path, imgs_full)
return save_path
def save_data(self, filename, data) -> str:
data = self.convert_data(data)
if isinstance(data, dict):
if not filename.endswith(".npz"):
filename += ".npz"
save_path = self.get_save_path(filename)
np.savez(save_path, **data)
else:
if not filename.endswith(".npy"):
filename += ".npy"
save_path = self.get_save_path(filename)
np.save(save_path, data)
return save_path
def save_state_dict(self, filename, data) -> str:
save_path = self.get_save_path(filename)
torch.save(data, save_path)
return save_path
def save_img_sequence(
self,
filename,
img_dir,
matcher,
save_format="mp4",
fps=30,
name: Optional[str] = None,
step: Optional[int] = None,
) -> str:
assert save_format in ["gif", "mp4"]
if not filename.endswith(save_format):
filename += f".{save_format}"
save_path = self.get_save_path(filename)
matcher = re.compile(matcher)
img_dir = os.path.join(self.get_save_dir(), img_dir)
imgs = []
for f in os.listdir(img_dir):
if matcher.search(f):
imgs.append(f)
imgs = sorted(imgs, key=lambda f: int(matcher.search(f).groups()[0]))
imgs = [cv2.imread(os.path.join(img_dir, f)) for f in imgs]
if save_format == "gif":
imgs = [cv2.cvtColor(i, cv2.COLOR_BGR2RGB) for i in imgs]
imageio.mimsave(save_path, imgs, fps=fps, palettesize=256)
elif save_format == "mp4":
imgs = [cv2.cvtColor(i, cv2.COLOR_BGR2RGB) for i in imgs]
imageio.mimsave(save_path, imgs, fps=fps)
if name and self._wandb_logger:
lrm.warn("Wandb logger does not support video logging yet!")
return save_path
def save_img_sequences(
self,
seq_dir,
matcher,
save_format="mp4",
fps=30,
delete=True,
name: Optional[str] = None,
step: Optional[int] = None,
):
seq_dir_ = os.path.join(self.get_save_dir(), seq_dir)
for f in os.listdir(seq_dir_):
img_dir_ = os.path.join(seq_dir_, f)
if not os.path.isdir(img_dir_):
continue
try:
self.save_img_sequence(
os.path.join(seq_dir, f),
os.path.join(seq_dir, f),
matcher,
save_format=save_format,
fps=fps,
name=f"{name}_{f}",
step=step,
)
if delete:
shutil.rmtree(img_dir_)
except:
lrm.warn(f"Video saving for directory {seq_dir_} failed!")
def save_mesh(self, filename, v_pos, t_pos_idx, v_tex=None, t_tex_idx=None) -> str:
import trimesh
save_path = self.get_save_path(filename)
v_pos = self.convert_data(v_pos)
t_pos_idx = self.convert_data(t_pos_idx)
mesh = trimesh.Trimesh(vertices=v_pos, faces=t_pos_idx)
mesh.export(save_path)
return save_path
def save_obj(
self,
filename: str,
mesh: Mesh,
save_mat: bool = False,
save_normal: bool = False,
save_uv: bool = False,
save_vertex_color: bool = False,
map_Kd: Optional[Float[Tensor, "H W 3"]] = None,
map_Ks: Optional[Float[Tensor, "H W 3"]] = None,
map_Bump: Optional[Float[Tensor, "H W 3"]] = None,
map_Pm: Optional[Float[Tensor, "H W 1"]] = None,
map_Pr: Optional[Float[Tensor, "H W 1"]] = None,
map_format: str = "jpg",
) -> List[str]:
save_paths: List[str] = []
if not filename.endswith(".obj"):
filename += ".obj"
v_pos, t_pos_idx = self.convert_data(mesh.v_pos), self.convert_data(
mesh.t_pos_idx
)
v_nrm, v_tex, t_tex_idx, v_rgb = None, None, None, None
if save_normal:
v_nrm = self.convert_data(mesh.v_nrm)
if save_uv:
v_tex, t_tex_idx = self.convert_data(mesh.v_tex), self.convert_data(
mesh.t_tex_idx
)
if save_vertex_color:
v_rgb = self.convert_data(mesh.v_rgb)
matname, mtllib = None, None
if save_mat:
matname = "default"
mtl_filename = filename.replace(".obj", ".mtl")
mtllib = os.path.basename(mtl_filename)
mtl_save_paths = self._save_mtl(
mtl_filename,
matname,
map_Kd=self.convert_data(map_Kd),
map_Ks=self.convert_data(map_Ks),
map_Bump=self.convert_data(map_Bump),
map_Pm=self.convert_data(map_Pm),
map_Pr=self.convert_data(map_Pr),
map_format=map_format,
)
save_paths += mtl_save_paths
obj_save_path = self._save_obj(
filename,
v_pos,
t_pos_idx,
v_nrm=v_nrm,
v_tex=v_tex,
t_tex_idx=t_tex_idx,
v_rgb=v_rgb,
matname=matname,
mtllib=mtllib,
)
save_paths.append(obj_save_path)
return save_paths
def _save_obj(
self,
filename,
v_pos,
t_pos_idx,
v_nrm=None,
v_tex=None,
t_tex_idx=None,
v_rgb=None,
matname=None,
mtllib=None,
) -> str:
obj_str = ""
if matname is not None:
obj_str += f"mtllib {mtllib}\n"
obj_str += f"g object\n"
obj_str += f"usemtl {matname}\n"
for i in range(len(v_pos)):
obj_str += f"v {v_pos[i][0]} {v_pos[i][1]} {v_pos[i][2]}"
if v_rgb is not None:
obj_str += f" {v_rgb[i][0]} {v_rgb[i][1]} {v_rgb[i][2]}"
obj_str += "\n"
if v_nrm is not None:
for v in v_nrm:
obj_str += f"vn {v[0]} {v[1]} {v[2]}\n"
if v_tex is not None:
for v in v_tex:
obj_str += f"vt {v[0]} {1.0 - v[1]}\n"
for i in range(len(t_pos_idx)):
obj_str += "f"
for j in range(3):
obj_str += f" {t_pos_idx[i][j] + 1}/"
if v_tex is not None:
obj_str += f"{t_tex_idx[i][j] + 1}"
obj_str += "/"
if v_nrm is not None:
obj_str += f"{t_pos_idx[i][j] + 1}"
obj_str += "\n"
save_path = self.get_save_path(filename)
with open(save_path, "w") as f:
f.write(obj_str)
return save_path
def _save_mtl(
self,
filename,
matname,
Ka=(0.0, 0.0, 0.0),
Kd=(1.0, 1.0, 1.0),
Ks=(0.0, 0.0, 0.0),
map_Kd=None,
map_Ks=None,
map_Bump=None,
map_Pm=None,
map_Pr=None,
map_format="jpg",
step: Optional[int] = None,
) -> List[str]:
mtl_save_path = self.get_save_path(filename)
save_paths = [mtl_save_path]
mtl_str = f"newmtl {matname}\n"
mtl_str += f"Ka {Ka[0]} {Ka[1]} {Ka[2]}\n"
if map_Kd is not None:
map_Kd_save_path = os.path.join(
os.path.dirname(mtl_save_path), f"texture_kd.{map_format}"
)
mtl_str += f"map_Kd texture_kd.{map_format}\n"
self._save_rgb_image(
map_Kd_save_path,
map_Kd,
data_format="HWC",
data_range=(0, 1),
name=f"{matname}_Kd",
step=step,
)
save_paths.append(map_Kd_save_path)
else:
mtl_str += f"Kd {Kd[0]} {Kd[1]} {Kd[2]}\n"
if map_Ks is not None:
map_Ks_save_path = os.path.join(
os.path.dirname(mtl_save_path), f"texture_ks.{map_format}"
)
mtl_str += f"map_Ks texture_ks.{map_format}\n"
self._save_rgb_image(
map_Ks_save_path,
map_Ks,
data_format="HWC",
data_range=(0, 1),
name=f"{matname}_Ks",
step=step,
)
save_paths.append(map_Ks_save_path)
else:
mtl_str += f"Ks {Ks[0]} {Ks[1]} {Ks[2]}\n"
if map_Bump is not None:
map_Bump_save_path = os.path.join(
os.path.dirname(mtl_save_path), f"texture_nrm.{map_format}"
)
mtl_str += f"map_Bump texture_nrm.{map_format}\n"
self._save_rgb_image(
map_Bump_save_path,
map_Bump,
data_format="HWC",
data_range=(0, 1),
name=f"{matname}_Bump",
step=step,
)
save_paths.append(map_Bump_save_path)
if map_Pm is not None:
map_Pm_save_path = os.path.join(
os.path.dirname(mtl_save_path), f"texture_metallic.{map_format}"
)
mtl_str += f"map_Pm texture_metallic.{map_format}\n"
self._save_grayscale_image(
map_Pm_save_path,
map_Pm,
data_range=(0, 1),
cmap=None,
name=f"{matname}_refl",
step=step,
)
save_paths.append(map_Pm_save_path)
if map_Pr is not None:
map_Pr_save_path = os.path.join(
os.path.dirname(mtl_save_path), f"texture_roughness.{map_format}"
)
mtl_str += f"map_Pr texture_roughness.{map_format}\n"
self._save_grayscale_image(
map_Pr_save_path,
map_Pr,
data_range=(0, 1),
cmap=None,
name=f"{matname}_Ns",
step=step,
)
save_paths.append(map_Pr_save_path)
with open(self.get_save_path(filename), "w") as f:
f.write(mtl_str)
return save_paths
def save_glb(
self,
filename: str,
mesh: Mesh,
save_mat: bool = False,
save_normal: bool = False,
save_uv: bool = False,
save_vertex_color: bool = False,
map_Kd: Optional[Float[Tensor, "H W 3"]] = None,
map_Ks: Optional[Float[Tensor, "H W 3"]] = None,
map_Bump: Optional[Float[Tensor, "H W 3"]] = None,
map_Pm: Optional[Float[Tensor, "H W 1"]] = None,
map_Pr: Optional[Float[Tensor, "H W 1"]] = None,
map_format: str = "jpg",
) -> List[str]:
save_paths: List[str] = []
if not filename.endswith(".glb"):
filename += ".glb"
v_pos, t_pos_idx = self.convert_data(mesh.v_pos), self.convert_data(
mesh.t_pos_idx
)
v_nrm, v_tex, t_tex_idx, v_rgb = None, None, None, None
if save_normal:
v_nrm = self.convert_data(mesh.v_nrm)
if save_uv:
v_tex, t_tex_idx = self.convert_data(mesh.v_tex), self.convert_data(
mesh.t_tex_idx
)
if save_vertex_color:
v_rgb = self.convert_data(mesh.v_rgb)
obj_save_path = self._save_glb(
filename,
v_pos,
t_pos_idx,
v_nrm=v_nrm,
v_tex=v_tex,
t_tex_idx=t_tex_idx,
v_rgb=v_rgb,
)
save_paths.append(obj_save_path)
return save_paths
def _save_glb(
self,
filename,
v_pos,
t_pos_idx,
v_nrm=None,
v_tex=None,
t_tex_idx=None,
v_rgb=None,
matname=None,
mtllib=None,
) -> str:
import trimesh
mesh = trimesh.Trimesh(
vertices=v_pos, faces=t_pos_idx, vertex_normals=v_nrm, vertex_colors=v_rgb
)
# not tested
if v_tex is not None:
mesh.visual = trimesh.visual.TextureVisuals(uv=v_tex)
save_path = self.get_save_path(filename)
mesh.export(save_path)
return save_path
def save_file(self, filename, src_path, delete=False) -> str:
save_path = self.get_save_path(filename)
shutil.copyfile(src_path, save_path)
if delete:
os.remove(src_path)
return save_path
def save_json(self, filename, payload) -> str:
save_path = self.get_save_path(filename)
with open(save_path, "w") as f:
f.write(json.dumps(payload))
return save_path