Spaces:
Sleeping
Sleeping
File size: 13,459 Bytes
9aedf73 6ced301 9aedf73 6ced301 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 |
---
title: Phosformer ST
emoji: 🐢
colorFrom: gray
colorTo: pink
sdk: gradio
sdk_version: 3.38.0
app_file: app.py
pinned: false
license: cc-by-nc-nd-4.0
---
<!-- This Github was Made By Nathan Gravel and tested with help of Mariah Salcedo-->
# Phosformer-ST <img src="https://github.com/gravelCompBio/Phosformer-ST/assets/75225868/f375e377-b639-4b8c-9792-6d8e5e9e6c39" width="60">
## Introduction
This repository contains the code to run Phosformer-ST locally from the manuscript "Phosformer-ST: explainable machine learning
uncovers the kinase-substrate interaction landscape" . This readme should also give you the specific versions for all packages used to run Phosformer-ST in a local environment.
The model was created by Zhongliang Zhou and Wayland Yeung. The Phos-ST webtool is found from this link (https://phosformer.netlify.app/) and was generated by Saber Soleymani.
</br>
## Quick overview of the dependencies
![Python](https://img.shields.io/badge/Python-FFD43B?style=for-the-badge&logo=python&logoColor=blue)
![Anaconda](https://img.shields.io/badge/Anaconda-%2344A833.svg?style=for-the-badge&logo=anaconda&logoColor=white)
![Jupyter](https://img.shields.io/badge/Jupyter-F37626.svg?&style=for-the-badge&logo=Jupyter&logoColor=white)
![PyTorch](https://img.shields.io/badge/PyTorch-EE4C2C?style=for-the-badge&logo=pytorch&logoColor=white)
![Numpy](https://img.shields.io/badge/Numpy-777BB4?style=for-the-badge&logo=numpy&logoColor=white)
![Pandas](https://img.shields.io/badge/Pandas-2C2D72?style=for-the-badge&logo=pandas&logoColor=white)
![Matplotlib](https://img.shields.io/badge/Matplotlib-%23ffffff.svg?style=for-the-badge&logo=Matplotlib&logoColor=black)
![scikit-learn](https://img.shields.io/badge/scikit--learn-%23F7931E.svg?style=for-the-badge&logo=scikit-learn&logoColor=white)
</br>
## Included in this repository are the following:
- `phos-ST_Example_Code.ipynb`: Jupyter File with example code to run Phosformer-ST
- `modeling_esm.py`: Python file that has the architecture of Phosformer-ST
- `configuration_esm.py`: Python file that has configuration/parameters of Phosformer-ST
- `tokenization_esm.py`: Python file that contains code for the tokenizer
- `multitask_MHA_esm2_t30_150M_UR50D_neg_ratio_8+8_shift_30_mask_0.2_2023-03-25_90.txt`: this txt file contains a link to a zenodo repository to download the proper folder
- This folder holds the files that contained the training weights for Phosformer-ST to run as advertised
- See section below (Downloading this repository) to be shown how to download this folder and where to put it
- `phosST.yml`: This file is used to help create an environment for Phos-ST to work
- `README.md`: You're reading it right now
- `LICENSE`: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License
</br>
</br>
## Installing dependencies with version info
### From conda:
![python=3.9.16](https://img.shields.io/badge/Python-3.9.16-green)
![jupyterlab=4.0.0](https://img.shields.io/badge/jupyterlab-4.0.0-blue)
Python == 3.9.16
### From pip:
![numpy=1.24.3](https://img.shields.io/badge/numpy-1.24.3-blue)
![pandas=2.0.2](https://img.shields.io/badge/pandas-2.0.2-blue)
![matplotlib=3.7.1](https://img.shields.io/badge/matplotlib-3.7.1-blue)
![scikit-learn=1.2.2](https://img.shields.io/badge/scikitlearn-1.2.2-blue)
![tqdm=4.65.0](https://img.shields.io/badge/tqdm-4.64.1-blue)
![fair-esm=2.0.0](https://img.shields.io/pypi/v/fair-esm?label=fair-esm)
![transformers=4.31.0](https://img.shields.io/badge/transformers-4.31.0-blue)
![torch=2.0.1](https://img.shields.io/badge/torch-2.0.1-blue)
### For torch/PyTorch
Make sure you go to this website https://pytorch.org/get-started/locally/
Follow along with its recommendation
Installing torch can be the most complex part
</br>
### The computer specs that we know that this model can run on (with gpu acceleration)
</br>
**Computer 1**
Ubuntu 22.04.2 LTS
Intel(R) Xeon(R) Bronze 3204 CPU @ 1.90GHz (6 cores) x (1 thread per core)
64 GB ram
NVIDIA Quadro RTX 5000 (16 GB vRAM)(CUDA Version: 12.1)
</br>
**Computer 2**
Ubuntu 20.04.6 LTS
Intel(R) Xeon(R) Bronze 3204 CPU @ 1.90GHz (6 cores) x (1 thread per core)
64 GB ram
NVIDIA RTX A4000 (16 GB vRAM)(CUDA Version: 12.2)
</br>
</br>
## Downloading this repository
```
git clone https://huggingface.co/gravelcompbio/Phosformer-ST_with_trainging_weights
```
```
cd Phosformer-ST_with_trainging_weights
```
The `Phosformer-ST_with_trainging_weights` folder should have the following files/folder in it
- file 1 `phos-ST_Example_Code.ipynb`
- file 2 `modeling_esm.py`
- file 3 `configuration_esm.py`
- file 4 `tokenization_esm.py`
- file 5 `multitask_MHA_esm2_t30_150M_UR50D_neg_ratio_8+8_shift_30_mask_0.2_2023-03-25_90.txt`
- file 6 `phosST.yml`
- file 7 `Readme.md`
- file 8 `LICENSE`
- folder 1 `multitask_MHA_esm2_t30_150M_UR50D_neg_ratio_8+8_shift_30_mask_0.2_2023-03-25_90` (make sure it is unzipped)
- zipped folder 2 `multitask_MHA_esm2_t30_150M_UR50D_neg_ratio_8+8_shift_30_mask_0.2_2023-03-25_90.zip`
Once you have a folder with the files/folder above in it you have done all the downloading needed
</br>
</br>
## ![Anaconda](https://img.shields.io/badge/Anaconda-%2344A833.svg?style=for-the-badge&logo=anaconda&logoColor=white) Installing dependencies with conda
### PICK ONE of the options below
### Option 1) Utilizing the PhosformerST.yml file
here is a step-by-step guide to set up the environment with the yml file
Just type these lines of code into the terminal after you download this repository (this assumes you have anaconda already installed)
```
conda env create -f phosST.yml -n PhosST
```
```
conda deactivate
```
```
conda activate phosST
```
### Option 2) Creating this environment without yml file
(This is if torch is being weird with your version of cuda or any other problem)
Just type these lines of code into the terminal after you download this repository (this assumes you have anaconda already installed)
```
conda create -n phosST python=3.9
```
```
conda deactivate
```
```
conda activate phosST
```
```
conda install -c conda-forge jupyterlab
```
```
pip3 install numpy==1.24.3
```
```
pip3 install pandas==2.0.2
```
```
pip3 install matplotlib==3.7.1
```
```
pip3 install scikit-learn==1.2.2
```
```
pip3 install tqdm==4.65.0
```
```
pip3 install fair-esm==2.0.0
```
```
pip3 install transformers==4.31.0
```
### **For torch you will have to download to the torch's specification if you want gpu acceleration from this website** https://pytorch.org/get-started/locally/
```
pip3 install torch torchvision torchaudio
```
### the terminal line above might look different for you
We provided code to test Phos-ST (see section below)
</br>
</br>
## Utilizing the Model with our example
All the following code examples is done inside of the `phos-ST_Example_Code.ipynb` file using jupyter lab
Once you have your environment resolved just use jupyter lab to access the example code by typing the comand below in your terminal (when you're in the `Phosformer-ST` folder)
```
jupyter lab
```
Once you open the notebook on your browser, run each cell of notebook
</br>
### Testing Phos-ST with the example code
There should be a positive control and a negative control example code at bottom of the `phos-ST_Example_Code.ipynb` file. This is here just to sanity check that the model is working. The positive and negative control is running the same code with known examples where Phos-ST should give an answered close to 1 (positive control) or 0 (negative control).
**Positive Example**
```Python
# P17612 KAPCA_HUMAN
kinDomain="FERIKTLGTGSFGRVMLVKHKETGNHYAMKILDKQKVVKLKQIEHTLNEKRILQAVNFPFLVKLEFSFKDNSNLYMVMEYVPGGEMFSHLRRIGRFSEPHARFYAAQIVLTFEYLHSLDLIYRDLKPENLLIDQQGYIQVTDFGFAKRVKGRTWTLCGTPEYLAPEIILSKGYNKAVDWWALGVLIYEMAAGYPPFFADQPIQIYEKIVSGKVRFPSHFSSDLKDLLRNLLQVDLTKRFGNLKNGVNDIKNHKWF"
# P53602_S96_LARKRRNSRDGDPLP
substrate="LARKRRNSRDGDPLP"
phosST(kinDomain,substrate).to_csv('PostiveExample.csv')
```
**Negative Example**
```Python
# P17612 KAPCA_HUMAN
kinDomain="FERIKTLGTGSFGRVMLVKHKETGNHYAMKILDKQKVVKLKQIEHTLNEKRILQAVNFPFLVKLEFSFKDNSNLYMVMEYVPGGEMFSHLRRIGRFSEPHARFYAAQIVLTFEYLHSLDLIYRDLKPENLLIDQQGYIQVTDFGFAKRVKGRTWTLCGTPEYLAPEIILSKGYNKAVDWWALGVLIYEMAAGYPPFFADQPIQIYEKIVSGKVRFPSHFSSDLKDLLRNLLQVDLTKRFGNLKNGVNDIKNHKWF"
# Q01831_T169_PVEIEIETPEQAKTR
substrate="PVEIEIETPEQAKTR"
phosST(kinDomain,substrate).to_csv('NegitiveExample.csv')
```
Both scores should show up in a csv file in the same folder of this code
</br>
### Inputting your own data for novel predictions
One can simply take the code from above and modify the string variables `kinDomain` and `substrate` to your prediction of interest
**Formatting of the `kinDomain` and `substrate` for input for phos-ST are as followed:**
- `kinDomain` should just be the kinase domain (instead of the full sequence), preferably human, and a Serine/Threonine kinases
- `substrate` should be a 15mer with the center residue/char being the Serine or Threonine being phosphorylated
Not following these rules will still give you and output at time but does not guarantee a prediction with the accuracy advertised
</br>
### How to interoperate Phosformer-ST's output
This model was trained to use the cutoff of 0.5 as the difference between positive prediction and negative prediction
If your custom prediction is above 0.5, the model is predicting the kinase-substrate pair is a positive prediction for a phosphorylation event
Though the training data is ultimately based on a positional scanning peptide array, this model only takes into account kinase binding preference.
Combining with other special, temporal, or other biologically relevant filters might be more accurate when modeling protein kinase.
</br>
### Modifying the code to take in a list of kinase domains and substrates
Currenly, we have it only predicting one kinase domain + one substrate at a time. One can simply swap out the `helper function to use Phos-ST` code-block with the code-block below. The input arguments now require a list of strings for both the kinase domains and substrates. Make sure the list of both kinases and substrates are the same length and conserve the same format specified in the "Inputting your own data for novel predictions" section of the readme
```Python
# P17612 KAPCA_HUMAN listed twice
kinDomains=["FERIKTLGTGSFGRVMLVKHKETGNHYAMKILDKQKVVKLKQIEHTLNEKRILQAVNFPFLVKLEFSFKDNSNLYMVMEYVPGGEMFSHLRRIGRFSEPHARFYAAQIVLTFEYLHSLDLIYRDLKPENLLIDQQGYIQVTDFGFAKRVKGRTWTLCGTPEYLAPEIILSKGYNKAVDWWALGVLIYEMAAGYPPFFADQPIQIYEKIVSGKVRFPSHFSSDLKDLLRNLLQVDLTKRFGNLKNGVNDIKNHKWF","FERIKTLGTGSFGRVMLVKHKETGNHYAMKILDKQKVVKLKQIEHTLNEKRILQAVNFPFLVKLEFSFKDNSNLYMVMEYVPGGEMFSHLRRIGRFSEPHARFYAAQIVLTFEYLHSLDLIYRDLKPENLLIDQQGYIQVTDFGFAKRVKGRTWTLCGTPEYLAPEIILSKGYNKAVDWWALGVLIYEMAAGYPPFFADQPIQIYEKIVSGKVRFPSHFSSDLKDLLRNLLQVDLTKRFGNLKNGVNDIKNHKWF"]
# P53602_S96_LARKRRNSRDGDPLP listed first and Q01831_T169_PVEIEIETPEQAKTR listed second
substrates=["LARKRRNSRDGDPLP","PVEIEIETPEQAKTR"]
def phosST(kinaseDomainSeqs,substrate15mers):
job = run_model(
substrate15mers,
kinaseDomainSeqs,
model=model,
tokenizer=tokenizer,
device='cuda',
batch_size=10,
output_hidden_states=False,
output_attentions=False,
)
#total = dataset.shape[0]
results = {
'kinase' : [],
'peptide' : [],
'prob' : [],
}
for n, i in enumerate(job):
#sys.stderr.write(f'{n+1} / {total}\r')
results['kinase' ] += [i['kinase']]
results['peptide'] += [i['peptide']]
results['prob' ] += [i['probability']]
result = pd.DataFrame(results)
return result
phosST(kinDomains,substrates).to_csv('BatchExample.csv')
```
</br>
</br>
## Troubleshooting
If torch is not installing correctly or you do not have a GPU to run Phos-ST on, the CPU version of torch is perfectly fine to use
Using the CPU version of torch might 10x to 1000x your run time so for large prediction datasets GPU acceleration is suggested
If you just are here to test if it phos-ST works, the example code should not take too much time to run on the CPU version of torch
Also depending on your GPU the `batch_size` argument might need to be adjusted
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference |