Spaces:
Running
Running
# coding=utf-8 | |
# Copyright 2022 Meta and The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" ESM model configuration""" | |
from dataclasses import asdict, dataclass | |
from typing import Optional | |
from transformers.configuration_utils import PretrainedConfig | |
from transformers.utils import logging | |
logger = logging.get_logger(__name__) | |
# TODO Update this | |
ESM_PRETRAINED_CONFIG_ARCHIVE_MAP = { | |
"facebook/esm-1b": "https://huggingface.co/facebook/esm-1b/resolve/main/config.json", | |
# See all ESM models at https://huggingface.co/models?filter=esm | |
} | |
class EsmConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`ESMModel`]. It is used to instantiate a ESM model | |
according to the specified arguments, defining the model architecture. Instantiating a configuration with the | |
defaults will yield a similar configuration to that of the ESM | |
[facebook/esm-1b](https://huggingface.co/facebook/esm-1b) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
vocab_size (`int`, *optional*): | |
Vocabulary size of the ESM model. Defines the number of different tokens that can be represented by the | |
`inputs_ids` passed when calling [`ESMModel`]. | |
mask_token_id (`int`, *optional*): | |
The index of the mask token in the vocabulary. This must be included in the config because of the | |
"mask-dropout" scaling trick, which will scale the inputs depending on the number of masked tokens. | |
pad_token_id (`int`, *optional*): | |
The index of the padding token in the vocabulary. This must be included in the config because certain parts | |
of the ESM code use this instead of the attention mask. | |
hidden_size (`int`, *optional*, defaults to 768): | |
Dimensionality of the encoder layers and the pooler layer. | |
num_hidden_layers (`int`, *optional*, defaults to 12): | |
Number of hidden layers in the Transformer encoder. | |
num_attention_heads (`int`, *optional*, defaults to 12): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
intermediate_size (`int`, *optional*, defaults to 3072): | |
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. | |
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): | |
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | |
`"relu"`, `"silu"` and `"gelu_new"` are supported. | |
hidden_dropout_prob (`float`, *optional*, defaults to 0.1): | |
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. | |
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): | |
The dropout ratio for the attention probabilities. | |
max_position_embeddings (`int`, *optional*, defaults to 1026): | |
The maximum sequence length that this model might ever be used with. Typically set this to something large | |
just in case (e.g., 512 or 1024 or 2048). | |
initializer_range (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
layer_norm_eps (`float`, *optional*, defaults to 1e-12): | |
The epsilon used by the layer normalization layers. | |
position_embedding_type (`str`, *optional*, defaults to `"absolute"`): | |
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query", "rotary"`. | |
For positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to | |
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). | |
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models | |
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658). | |
use_cache (`bool`, *optional*, defaults to `True`): | |
Whether or not the model should return the last key/values attentions (not used by all models). Only | |
relevant if `config.is_decoder=True`. | |
classifier_dropout (`float`, *optional*): | |
The dropout ratio for the classification head. | |
emb_layer_norm_before (`bool`, *optional*): | |
Whether to apply layer normalization after embeddings but before the main stem of the network. | |
token_dropout (`bool`, defaults to `False`): | |
When this is enabled, masked tokens are treated as if they had been dropped out by input dropout. | |
Examples: | |
```python | |
>>> from transformers import EsmModel, EsmConfig | |
>>> # Initializing a ESM facebook/esm-1b style configuration >>> configuration = EsmConfig() | |
>>> # Initializing a model from the configuration >>> model = ESMModel(configuration) | |
>>> # Accessing the model configuration >>> configuration = model.config | |
```""" | |
model_type = "esm" | |
def __init__( | |
self, | |
vocab_size=None, | |
mask_token_id=None, | |
pad_token_id=None, | |
hidden_size=768, | |
num_hidden_layers=12, | |
num_attention_heads=12, | |
intermediate_size=3072, | |
hidden_act="gelu", | |
hidden_dropout_prob=0.1, | |
attention_probs_dropout_prob=0.1, | |
max_position_embeddings=1026, | |
initializer_range=0.02, | |
layer_norm_eps=1e-12, | |
position_embedding_type="absolute", | |
use_cache=True, | |
classifier_dropout=None, | |
emb_layer_norm_before=None, | |
token_dropout=False, | |
is_folding_model=False, | |
esmfold_config=None, | |
vocab_list=None, | |
**kwargs | |
): | |
super().__init__(pad_token_id=pad_token_id, mask_token_id=mask_token_id, **kwargs) | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.hidden_act = hidden_act | |
self.intermediate_size = intermediate_size | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.max_position_embeddings = max_position_embeddings | |
self.initializer_range = initializer_range | |
self.layer_norm_eps = layer_norm_eps | |
self.position_embedding_type = position_embedding_type | |
self.use_cache = use_cache | |
self.classifier_dropout = classifier_dropout | |
self.emb_layer_norm_before = emb_layer_norm_before | |
self.token_dropout = token_dropout | |
self.is_folding_model = is_folding_model | |
if is_folding_model: | |
if esmfold_config is None: | |
logger.info("No esmfold_config supplied for folding model, using default values.") | |
esmfold_config = EsmFoldConfig() | |
elif isinstance(esmfold_config, dict): | |
esmfold_config = EsmFoldConfig(**esmfold_config) | |
self.esmfold_config = esmfold_config | |
if vocab_list is None: | |
logger.warning("No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!") | |
self.vocab_list = get_default_vocab_list() | |
else: | |
self.vocab_list = vocab_list | |
else: | |
self.esmfold_config = None | |
self.vocab_list = None | |
if self.esmfold_config is not None and getattr(self.esmfold_config, "use_esm_attn_map", False): | |
raise ValueError("The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!") | |
def to_dict(self): | |
""" | |
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`]. | |
Returns: | |
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance, | |
""" | |
output = super().to_dict() | |
if isinstance(self.esmfold_config, EsmFoldConfig): | |
output["esmfold_config"] = self.esmfold_config.to_dict() | |
return output | |
class EsmFoldConfig: | |
esm_type: str = None | |
fp16_esm: bool = True | |
use_esm_attn_map: bool = False | |
esm_ablate_pairwise: bool = False | |
esm_ablate_sequence: bool = False | |
esm_input_dropout: float = 0 | |
embed_aa: bool = True | |
bypass_lm: bool = False | |
lddt_head_hid_dim: int = 128 | |
trunk: "TrunkConfig" = None | |
def __post_init__(self): | |
if self.trunk is None: | |
self.trunk = TrunkConfig() | |
elif isinstance(self.trunk, dict): | |
self.trunk = TrunkConfig(**self.trunk) | |
def to_dict(self): | |
""" | |
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`]. | |
Returns: | |
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance, | |
""" | |
output = asdict(self) | |
output["trunk"] = self.trunk.to_dict() | |
return output | |
class TrunkConfig: | |
num_blocks: int = 48 | |
sequence_state_dim: int = 1024 | |
pairwise_state_dim: int = 128 | |
sequence_head_width: int = 32 | |
pairwise_head_width: int = 32 | |
position_bins: int = 32 | |
dropout: float = 0 | |
layer_drop: float = 0 | |
cpu_grad_checkpoint: bool = False | |
max_recycles: int = 4 | |
chunk_size: Optional[int] = 128 | |
structure_module: "StructureModuleConfig" = None | |
def __post_init__(self): | |
if self.structure_module is None: | |
self.structure_module = StructureModuleConfig() | |
elif isinstance(self.structure_module, dict): | |
self.structure_module = StructureModuleConfig(**self.structure_module) | |
if self.max_recycles <= 0: | |
raise ValueError(f"`max_recycles` should be positive, got {self.max_recycles}.") | |
if self.sequence_state_dim % self.sequence_state_dim != 0: | |
raise ValueError( | |
"`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got" | |
f" {self.sequence_state_dim} and {self.sequence_state_dim}." | |
) | |
if self.pairwise_state_dim % self.pairwise_state_dim != 0: | |
raise ValueError( | |
"`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got" | |
f" {self.pairwise_state_dim} and {self.pairwise_state_dim}." | |
) | |
sequence_num_heads = self.sequence_state_dim // self.sequence_head_width | |
pairwise_num_heads = self.pairwise_state_dim // self.pairwise_head_width | |
if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: | |
raise ValueError( | |
"`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got" | |
f" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}." | |
) | |
if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: | |
raise ValueError( | |
"`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got" | |
f" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}." | |
) | |
if self.pairwise_state_dim % 2 != 0: | |
raise ValueError(f"`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.") | |
if self.dropout >= 0.4: | |
raise ValueError(f"`dropout` should not be greater than 0.4, got {self.dropout}.") | |
def to_dict(self): | |
""" | |
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`]. | |
Returns: | |
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance, | |
""" | |
output = asdict(self) | |
output["structure_module"] = self.structure_module.to_dict() | |
return output | |
class StructureModuleConfig: | |
""" | |
Args: | |
sequence_dim: | |
Single representation channel dimension | |
pairwise_dim: | |
Pair representation channel dimension | |
ipa_dim: | |
IPA hidden channel dimension | |
resnet_dim: | |
Angle resnet (Alg. 23 lines 11-14) hidden channel dimension | |
num_heads_ipa: | |
Number of IPA heads | |
num_qk_points: | |
Number of query/key points to generate during IPA | |
num_v_points: | |
Number of value points to generate during IPA | |
dropout_rate: | |
Dropout rate used throughout the layer | |
num_blocks: | |
Number of structure module blocks | |
num_transition_layers: | |
Number of layers in the single representation transition (Alg. 23 lines 8-9) | |
num_resnet_blocks: | |
Number of blocks in the angle resnet | |
num_angles: | |
Number of angles to generate in the angle resnet | |
trans_scale_factor: | |
Scale of single representation transition hidden dimension | |
epsilon: | |
Small number used in angle resnet normalization | |
inf: | |
Large number used for attention masking | |
""" | |
sequence_dim: int = 384 | |
pairwise_dim: int = 128 | |
ipa_dim: int = 16 | |
resnet_dim: int = 128 | |
num_heads_ipa: int = 12 | |
num_qk_points: int = 4 | |
num_v_points: int = 8 | |
dropout_rate: float = 0.1 | |
num_blocks: int = 8 | |
num_transition_layers: int = 1 | |
num_resnet_blocks: int = 2 | |
num_angles: int = 7 | |
trans_scale_factor: int = 10 | |
epsilon: float = 1e-8 | |
inf: float = 1e5 | |
def to_dict(self): | |
return asdict(self) | |
def get_default_vocab_list(): | |
return ( | |
"<cls>", | |
"<pad>", | |
"<eos>", | |
"<unk>", | |
"L", | |
"A", | |
"G", | |
"V", | |
"S", | |
"E", | |
"R", | |
"T", | |
"I", | |
"D", | |
"P", | |
"K", | |
"Q", | |
"N", | |
"F", | |
"Y", | |
"M", | |
"H", | |
"W", | |
"C", | |
"X", | |
"B", | |
"U", | |
"Z", | |
"O", | |
".", | |
"-", | |
"<null_1>", | |
"<mask>", | |
) | |