File size: 31,618 Bytes
f23d3db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Transformers installation\n",
    "! pip install transformers datasets\n",
    "# To install from source instead of the last release, comment the command above and uncomment the following one.\n",
    "# ! pip install git+https://github.com/huggingface/transformers.git"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Fine-tune a pretrained model"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "There are significant benefits to using a pretrained model. It reduces computation costs, your carbon footprint, and allows you to use state-of-the-art models without having to train one from scratch. 🤗 Transformers provides access to thousands of pretrained models for a wide range of tasks. When you use a pretrained model, you train it on a dataset specific to your task. This is known as fine-tuning, an incredibly powerful training technique. In this tutorial, you will fine-tune a pretrained model with a deep learning framework of your choice:\n",
    "\n",
    "* Fine-tune a pretrained model with 🤗 Transformers [Trainer](https://huggingface.co/docs/transformers/main/en/main_classes/trainer#transformers.Trainer).\n",
    "* Fine-tune a pretrained model in TensorFlow with Keras.\n",
    "* Fine-tune a pretrained model in native PyTorch.\n",
    "\n",
    "<a id='data-processing'></a>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Prepare a dataset"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "cellView": "form",
    "hide_input": true
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<iframe width=\"560\" height=\"315\" src=\"https://www.youtube.com/embed/_BZearw7f0w?rel=0&amp;controls=0&amp;showinfo=0\" frameborder=\"0\" allowfullscreen></iframe>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "execution_count": null,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "#@title\n",
    "from IPython.display import HTML\n",
    "\n",
    "HTML('<iframe width=\"560\" height=\"315\" src=\"https://www.youtube.com/embed/_BZearw7f0w?rel=0&amp;controls=0&amp;showinfo=0\" frameborder=\"0\" allowfullscreen></iframe>')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Before you can fine-tune a pretrained model, download a dataset and prepare it for training. The previous tutorial showed you how to process data for training, and now you get an opportunity to put those skills to the test!\n",
    "\n",
    "Begin by loading the [Yelp Reviews](https://huggingface.co/datasets/yelp_review_full) dataset:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{'label': 0,\n",
       " 'text': 'My expectations for McDonalds are t rarely high. But for one to still fail so spectacularly...that takes something special!\\\\nThe cashier took my friends\\'s order, then promptly ignored me. I had to force myself in front of a cashier who opened his register to wait on the person BEHIND me. I waited over five minutes for a gigantic order that included precisely one kid\\'s meal. After watching two people who ordered after me be handed their food, I asked where mine was. The manager started yelling at the cashiers for \\\\\"serving off their orders\\\\\" when they didn\\'t have their food. But neither cashier was anywhere near those controls, and the manager was the one serving food to customers and clearing the boards.\\\\nThe manager was rude when giving me my order. She didn\\'t make sure that I had everything ON MY RECEIPT, and never even had the decency to apologize that I felt I was getting poor service.\\\\nI\\'ve eaten at various McDonalds restaurants for over 30 years. I\\'ve worked at more than one location. I expect bad days, bad moods, and the occasional mistake. But I have yet to have a decent experience at this store. It will remain a place I avoid unless someone in my party needs to avoid illness from low blood sugar. Perhaps I should go back to the racially biased service of Steak n Shake instead!'}"
      ]
     },
     "execution_count": null,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "from datasets import load_dataset\n",
    "\n",
    "dataset = load_dataset(\"yelp_review_full\")\n",
    "dataset[\"train\"][100]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "As you now know, you need a tokenizer to process the text and include a padding and truncation strategy to handle any variable sequence lengths. To process your dataset in one step, use 🤗 Datasets [`map`](https://huggingface.co/docs/datasets/process.html#map) method to apply a preprocessing function over the entire dataset:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from transformers import AutoTokenizer\n",
    "\n",
    "tokenizer = AutoTokenizer.from_pretrained(\"bert-base-cased\")\n",
    "\n",
    "\n",
    "def tokenize_function(examples):\n",
    "    return tokenizer(examples[\"text\"], padding=\"max_length\", truncation=True)\n",
    "\n",
    "\n",
    "tokenized_datasets = dataset.map(tokenize_function, batched=True)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "If you like, you can create a smaller subset of the full dataset to fine-tune on to reduce the time it takes:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "small_train_dataset = tokenized_datasets[\"train\"].shuffle(seed=42).select(range(1000))\n",
    "small_eval_dataset = tokenized_datasets[\"test\"].shuffle(seed=42).select(range(1000))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<a id='trainer'></a>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Train"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "At this point, you should follow the section corresponding to the framework you want to use. You can use the links\n",
    "in the right sidebar to jump to the one you want - and if you want to hide all of the content for a given framework,\n",
    "just use the button at the top-right of that framework's block!"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "cellView": "form",
    "hide_input": true
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<iframe width=\"560\" height=\"315\" src=\"https://www.youtube.com/embed/nvBXf7s7vTI?rel=0&amp;controls=0&amp;showinfo=0\" frameborder=\"0\" allowfullscreen></iframe>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "execution_count": null,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "#@title\n",
    "from IPython.display import HTML\n",
    "\n",
    "HTML('<iframe width=\"560\" height=\"315\" src=\"https://www.youtube.com/embed/nvBXf7s7vTI?rel=0&amp;controls=0&amp;showinfo=0\" frameborder=\"0\" allowfullscreen></iframe>')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Train with PyTorch Trainer"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "🤗 Transformers provides a [Trainer](https://huggingface.co/docs/transformers/main/en/main_classes/trainer#transformers.Trainer) class optimized for training 🤗 Transformers models, making it easier to start training without manually writing your own training loop. The [Trainer](https://huggingface.co/docs/transformers/main/en/main_classes/trainer#transformers.Trainer) API supports a wide range of training options and features such as logging, gradient accumulation, and mixed precision.\n",
    "\n",
    "Start by loading your model and specify the number of expected labels. From the Yelp Review [dataset card](https://huggingface.co/datasets/yelp_review_full#data-fields), you know there are five labels:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from transformers import AutoModelForSequenceClassification\n",
    "\n",
    "model = AutoModelForSequenceClassification.from_pretrained(\"bert-base-cased\", num_labels=5)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<Tip>\n",
    "\n",
    "You will see a warning about some of the pretrained weights not being used and some weights being randomly\n",
    "initialized. Don't worry, this is completely normal! The pretrained head of the BERT model is discarded, and replaced with a randomly initialized classification head. You will fine-tune this new model head on your sequence classification task, transferring the knowledge of the pretrained model to it.\n",
    "\n",
    "</Tip>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Training hyperparameters"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Next, create a [TrainingArguments](https://huggingface.co/docs/transformers/main/en/main_classes/trainer#transformers.TrainingArguments) class which contains all the hyperparameters you can tune as well as flags for activating different training options. For this tutorial you can start with the default training [hyperparameters](https://huggingface.co/docs/transformers/main_classes/trainer#transformers.TrainingArguments), but feel free to experiment with these to find your optimal settings.\n",
    "\n",
    "Specify where to save the checkpoints from your training:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from transformers import TrainingArguments\n",
    "\n",
    "training_args = TrainingArguments(output_dir=\"test_trainer\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Evaluate"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "[Trainer](https://huggingface.co/docs/transformers/main/en/main_classes/trainer#transformers.Trainer) does not automatically evaluate model performance during training. You'll need to pass [Trainer](https://huggingface.co/docs/transformers/main/en/main_classes/trainer#transformers.Trainer) a function to compute and report metrics. The [🤗 Evaluate](https://huggingface.co/docs/evaluate/index) library provides a simple [`accuracy`](https://huggingface.co/spaces/evaluate-metric/accuracy) function you can load with the [evaluate.load](https://huggingface.co/docs/evaluate/main/en/package_reference/loading_methods#evaluate.load) (see this [quicktour](https://huggingface.co/docs/evaluate/a_quick_tour) for more information) function:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import numpy as np\n",
    "import evaluate\n",
    "\n",
    "metric = evaluate.load(\"accuracy\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Call `compute` on `metric` to calculate the accuracy of your predictions. Before passing your predictions to `compute`, you need to convert the predictions to logits (remember all 🤗 Transformers models return logits):"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "def compute_metrics(eval_pred):\n",
    "    logits, labels = eval_pred\n",
    "    predictions = np.argmax(logits, axis=-1)\n",
    "    return metric.compute(predictions=predictions, references=labels)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "If you'd like to monitor your evaluation metrics during fine-tuning, specify the `evaluation_strategy` parameter in your training arguments to report the evaluation metric at the end of each epoch:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from transformers import TrainingArguments, Trainer\n",
    "\n",
    "training_args = TrainingArguments(output_dir=\"test_trainer\", evaluation_strategy=\"epoch\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Trainer"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Create a [Trainer](https://huggingface.co/docs/transformers/main/en/main_classes/trainer#transformers.Trainer) object with your model, training arguments, training and test datasets, and evaluation function:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "trainer = Trainer(\n",
    "    model=model,\n",
    "    args=training_args,\n",
    "    train_dataset=small_train_dataset,\n",
    "    eval_dataset=small_eval_dataset,\n",
    "    compute_metrics=compute_metrics,\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Then fine-tune your model by calling [train()](https://huggingface.co/docs/transformers/main/en/main_classes/trainer#transformers.Trainer.train):"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "trainer.train()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<a id='keras'></a>"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "cellView": "form",
    "hide_input": true
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<iframe width=\"560\" height=\"315\" src=\"https://www.youtube.com/embed/rnTGBy2ax1c?rel=0&amp;controls=0&amp;showinfo=0\" frameborder=\"0\" allowfullscreen></iframe>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "execution_count": null,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "#@title\n",
    "from IPython.display import HTML\n",
    "\n",
    "HTML('<iframe width=\"560\" height=\"315\" src=\"https://www.youtube.com/embed/rnTGBy2ax1c?rel=0&amp;controls=0&amp;showinfo=0\" frameborder=\"0\" allowfullscreen></iframe>')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Train a TensorFlow model with Keras"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "You can also train 🤗 Transformers models in TensorFlow with the Keras API!"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Loading data for Keras"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "When you want to train a 🤗 Transformers model with the Keras API, you need to convert your dataset to a format that\n",
    "Keras understands. If your dataset is small, you can just convert the whole thing to NumPy arrays and pass it to Keras.\n",
    "Let's try that first before we do anything more complicated.\n",
    "\n",
    "First, load a dataset. We'll use the CoLA dataset from the [GLUE benchmark](https://huggingface.co/datasets/glue),\n",
    "since it's a simple binary text classification task, and just take the training split for now."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from datasets import load_dataset\n",
    "\n",
    "dataset = load_dataset(\"glue\", \"cola\")\n",
    "dataset = dataset[\"train\"]  # Just take the training split for now"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Next, load a tokenizer and tokenize the data as NumPy arrays. Note that the labels are already a list of 0 and 1s,\n",
    "so we can just convert that directly to a NumPy array without tokenization!"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from transformers import AutoTokenizer\n",
    "\n",
    "tokenizer = AutoTokenizer.from_pretrained(\"bert-base-cased\")\n",
    "tokenized_data = tokenizer(dataset[\"sentence\"], return_tensors=\"np\", padding=True)\n",
    "# Tokenizer returns a BatchEncoding, but we convert that to a dict for Keras\n",
    "tokenized_data = dict(tokenized_data)\n",
    "\n",
    "labels = np.array(dataset[\"label\"])  # Label is already an array of 0 and 1"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Finally, load, [`compile`](https://keras.io/api/models/model_training_apis/#compile-method), and [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) the model. Note that Transformers models all have a default task-relevant loss function, so you don't need to specify one unless you want to:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from transformers import TFAutoModelForSequenceClassification\n",
    "from tensorflow.keras.optimizers import Adam\n",
    "\n",
    "# Load and compile our model\n",
    "model = TFAutoModelForSequenceClassification.from_pretrained(\"bert-base-cased\")\n",
    "# Lower learning rates are often better for fine-tuning transformers\n",
    "model.compile(optimizer=Adam(3e-5))  # No loss argument!\n",
    "\n",
    "model.fit(tokenized_data, labels)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<Tip>\n",
    "\n",
    "You don't have to pass a loss argument to your models when you `compile()` them! Hugging Face models automatically\n",
    "choose a loss that is appropriate for their task and model architecture if this argument is left blank. You can always\n",
    "override this by specifying a loss yourself if you want to!\n",
    "\n",
    "</Tip>\n",
    "\n",
    "This approach works great for smaller datasets, but for larger datasets, you might find it starts to become a problem. Why?\n",
    "Because the tokenized array and labels would have to be fully loaded into memory, and because NumPy doesn’t handle\n",
    "“jagged” arrays, so every tokenized sample would have to be padded to the length of the longest sample in the whole\n",
    "dataset. That’s going to make your array even bigger, and all those padding tokens will slow down training too!"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Loading data as a tf.data.Dataset"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "If you want to avoid slowing down training, you can load your data as a `tf.data.Dataset` instead. Although you can write your own\n",
    "`tf.data` pipeline if you want, we have two convenience methods for doing this:\n",
    "\n",
    "- [prepare_tf_dataset()](https://huggingface.co/docs/transformers/main/en/main_classes/model#transformers.TFPreTrainedModel.prepare_tf_dataset): This is the method we recommend in most cases. Because it is a method\n",
    "on your model, it can inspect the model to automatically figure out which columns are usable as model inputs, and\n",
    "discard the others to make a simpler, more performant dataset.\n",
    "- [to_tf_dataset](https://huggingface.co/docs/datasets/main/en/package_reference/main_classes#datasets.Dataset.to_tf_dataset): This method is more low-level, and is useful when you want to exactly control how\n",
    "your dataset is created, by specifying exactly which `columns` and `label_cols` to include.\n",
    "\n",
    "Before you can use [prepare_tf_dataset()](https://huggingface.co/docs/transformers/main/en/main_classes/model#transformers.TFPreTrainedModel.prepare_tf_dataset), you will need to add the tokenizer outputs to your dataset as columns, as shown in\n",
    "the following code sample:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "def tokenize_dataset(data):\n",
    "    # Keys of the returned dictionary will be added to the dataset as columns\n",
    "    return tokenizer(data[\"text\"])\n",
    "\n",
    "\n",
    "dataset = dataset.map(tokenize_dataset)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Remember that Hugging Face datasets are stored on disk by default, so this will not inflate your memory usage! Once the\n",
    "columns have been added, you can stream batches from the dataset and add padding to each batch, which greatly\n",
    "reduces the number of padding tokens compared to padding the entire dataset."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "tf_dataset = model.prepare_tf_dataset(dataset[\"train\"], batch_size=16, shuffle=True, tokenizer=tokenizer)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Note that in the code sample above, you need to pass the tokenizer to `prepare_tf_dataset` so it can correctly pad batches as they're loaded.\n",
    "If all the samples in your dataset are the same length and no padding is necessary, you can skip this argument.\n",
    "If you need to do something more complex than just padding samples (e.g. corrupting tokens for masked language\n",
    "modelling), you can use the `collate_fn` argument instead to pass a function that will be called to transform the\n",
    "list of samples into a batch and apply any preprocessing you want. See our\n",
    "[examples](https://github.com/huggingface/transformers/tree/main/examples) or\n",
    "[notebooks](https://huggingface.co/docs/transformers/notebooks) to see this approach in action.\n",
    "\n",
    "Once you've created a `tf.data.Dataset`, you can compile and fit the model as before:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "model.compile(optimizer=Adam(3e-5))  # No loss argument!\n",
    "\n",
    "model.fit(tf_dataset)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<a id='pytorch_native'></a>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Train in native PyTorch"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "cellView": "form",
    "hide_input": true
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<iframe width=\"560\" height=\"315\" src=\"https://www.youtube.com/embed/Dh9CL8fyG80?rel=0&amp;controls=0&amp;showinfo=0\" frameborder=\"0\" allowfullscreen></iframe>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "execution_count": null,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "#@title\n",
    "from IPython.display import HTML\n",
    "\n",
    "HTML('<iframe width=\"560\" height=\"315\" src=\"https://www.youtube.com/embed/Dh9CL8fyG80?rel=0&amp;controls=0&amp;showinfo=0\" frameborder=\"0\" allowfullscreen></iframe>')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "[Trainer](https://huggingface.co/docs/transformers/main/en/main_classes/trainer#transformers.Trainer) takes care of the training loop and allows you to fine-tune a model in a single line of code. For users who prefer to write their own training loop, you can also fine-tune a 🤗 Transformers model in native PyTorch.\n",
    "\n",
    "At this point, you may need to restart your notebook or execute the following code to free some memory:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "del model\n",
    "del trainer\n",
    "torch.cuda.empty_cache()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Next, manually postprocess `tokenized_dataset` to prepare it for training.\n",
    "\n",
    "1. Remove the `text` column because the model does not accept raw text as an input:\n",
    "\n",
    "    ```py\n",
    "    >>> tokenized_datasets = tokenized_datasets.remove_columns([\"text\"])\n",
    "    ```\n",
    "\n",
    "2. Rename the `label` column to `labels` because the model expects the argument to be named `labels`:\n",
    "\n",
    "    ```py\n",
    "    >>> tokenized_datasets = tokenized_datasets.rename_column(\"label\", \"labels\")\n",
    "    ```\n",
    "\n",
    "3. Set the format of the dataset to return PyTorch tensors instead of lists:\n",
    "\n",
    "    ```py\n",
    "    >>> tokenized_datasets.set_format(\"torch\")\n",
    "    ```\n",
    "\n",
    "Then create a smaller subset of the dataset as previously shown to speed up the fine-tuning:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "small_train_dataset = tokenized_datasets[\"train\"].shuffle(seed=42).select(range(1000))\n",
    "small_eval_dataset = tokenized_datasets[\"test\"].shuffle(seed=42).select(range(1000))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### DataLoader"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Create a `DataLoader` for your training and test datasets so you can iterate over batches of data:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from torch.utils.data import DataLoader\n",
    "\n",
    "train_dataloader = DataLoader(small_train_dataset, shuffle=True, batch_size=8)\n",
    "eval_dataloader = DataLoader(small_eval_dataset, batch_size=8)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Load your model with the number of expected labels:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from transformers import AutoModelForSequenceClassification\n",
    "\n",
    "model = AutoModelForSequenceClassification.from_pretrained(\"bert-base-cased\", num_labels=5)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Optimizer and learning rate scheduler"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Create an optimizer and learning rate scheduler to fine-tune the model. Let's use the [`AdamW`](https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html) optimizer from PyTorch:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from torch.optim import AdamW\n",
    "\n",
    "optimizer = AdamW(model.parameters(), lr=5e-5)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Create the default learning rate scheduler from [Trainer](https://huggingface.co/docs/transformers/main/en/main_classes/trainer#transformers.Trainer):"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from transformers import get_scheduler\n",
    "\n",
    "num_epochs = 3\n",
    "num_training_steps = num_epochs * len(train_dataloader)\n",
    "lr_scheduler = get_scheduler(\n",
    "    name=\"linear\", optimizer=optimizer, num_warmup_steps=0, num_training_steps=num_training_steps\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Lastly, specify `device` to use a GPU if you have access to one. Otherwise, training on a CPU may take several hours instead of a couple of minutes."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import torch\n",
    "\n",
    "device = torch.device(\"cuda\") if torch.cuda.is_available() else torch.device(\"cpu\")\n",
    "model.to(device)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<Tip>\n",
    "\n",
    "Get free access to a cloud GPU if you don't have one with a hosted notebook like [Colaboratory](https://colab.research.google.com/) or [SageMaker StudioLab](https://studiolab.sagemaker.aws/).\n",
    "\n",
    "</Tip>\n",
    "\n",
    "Great, now you are ready to train! 🥳"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Training loop"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "To keep track of your training progress, use the [tqdm](https://tqdm.github.io/) library to add a progress bar over the number of training steps:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from tqdm.auto import tqdm\n",
    "\n",
    "progress_bar = tqdm(range(num_training_steps))\n",
    "\n",
    "model.train()\n",
    "for epoch in range(num_epochs):\n",
    "    for batch in train_dataloader:\n",
    "        batch = {k: v.to(device) for k, v in batch.items()}\n",
    "        outputs = model(**batch)\n",
    "        loss = outputs.loss\n",
    "        loss.backward()\n",
    "\n",
    "        optimizer.step()\n",
    "        lr_scheduler.step()\n",
    "        optimizer.zero_grad()\n",
    "        progress_bar.update(1)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Evaluate"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Just like how you added an evaluation function to [Trainer](https://huggingface.co/docs/transformers/main/en/main_classes/trainer#transformers.Trainer), you need to do the same when you write your own training loop. But instead of calculating and reporting the metric at the end of each epoch, this time you'll accumulate all the batches with `add_batch` and calculate the metric at the very end."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import evaluate\n",
    "\n",
    "metric = evaluate.load(\"accuracy\")\n",
    "model.eval()\n",
    "for batch in eval_dataloader:\n",
    "    batch = {k: v.to(device) for k, v in batch.items()}\n",
    "    with torch.no_grad():\n",
    "        outputs = model(**batch)\n",
    "\n",
    "    logits = outputs.logits\n",
    "    predictions = torch.argmax(logits, dim=-1)\n",
    "    metric.add_batch(predictions=predictions, references=batch[\"labels\"])\n",
    "\n",
    "metric.compute()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<a id='additional-resources'></a>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Additional resources"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "For more fine-tuning examples, refer to:\n",
    "\n",
    "- [🤗 Transformers Examples](https://github.com/huggingface/transformers/tree/main/examples) includes scripts\n",
    "  to train common NLP tasks in PyTorch and TensorFlow.\n",
    "\n",
    "- [🤗 Transformers Notebooks](https://huggingface.co/docs/transformers/main/en/notebooks) contains various notebooks on how to fine-tune a model for specific tasks in PyTorch and TensorFlow."
   ]
  }
 ],
 "metadata": {},
 "nbformat": 4,
 "nbformat_minor": 4
}