Spaces:
Running
Running
import sys | |
import os | |
import time | |
import math | |
import torch | |
import spaces | |
# By using XTTS you agree to CPML license https://coqui.ai/cpml | |
os.environ["COQUI_TOS_AGREED"] = "1" | |
import gradio as gr | |
from TTS.api import TTS | |
from TTS.utils.manage import ModelManager | |
model_names = TTS().list_models() | |
print(model_names.__dict__) | |
print(model_names.__dir__()) | |
model_name = "tts_models/multilingual/multi-dataset/xtts_v2" | |
m = model_name | |
# Automatic device detection | |
if torch.cuda.is_available(): | |
# cuda only | |
device_type = "cuda" | |
device_selection = "cuda:0" | |
data_type = torch.float16 | |
else: | |
# no GPU or Amd | |
device_type = "cpu" | |
device_selection = "cpu" | |
data_type = torch.float32 | |
tts = TTS(model_name, gpu=torch.cuda.is_available()) | |
tts.to(device_type) | |
def predict(prompt, language, gender, audio_file_pth, mic_file_path, use_mic): | |
start = time.time() | |
if len(prompt) < 2: | |
gr.Warning("Please give a longer prompt text") | |
return ( | |
None, | |
None, | |
None, | |
) | |
if 50000 < len(prompt): | |
gr.Warning("Text length limited to 50,000 characters for this demo, please try shorter text") | |
return ( | |
None, | |
None, | |
None, | |
) | |
if use_mic: | |
if mic_file_path is None: | |
gr.Warning("Please record your voice with Microphone, or uncheck Use Microphone to use reference audios") | |
return ( | |
None, | |
None, | |
None, | |
) | |
else: | |
speaker_wav = mic_file_path | |
else: | |
speaker_wav = audio_file_pth | |
if speaker_wav is None: | |
if gender == "male": | |
speaker_wav = "./examples/male.mp3" | |
else: | |
speaker_wav = "./examples/female.wav" | |
try: | |
if language == "fr": | |
if m.find("your") != -1: | |
language = "fr-fr" | |
if m.find("/fr/") != -1: | |
language = None | |
predict_on_gpu(prompt, speaker_wav, language) | |
except RuntimeError as e : | |
if "device-assert" in str(e): | |
# cannot do anything on cuda device side error, need to restart | |
gr.Warning("Unhandled Exception encounter, please retry in a minute") | |
print("Cuda device-assert Runtime encountered need restart") | |
sys.exit("Exit due to cuda device-assert") | |
else: | |
raise e | |
end = time.time() | |
secondes = int(end - start) | |
minutes = math.floor(secondes / 60) | |
secondes = secondes - (minutes * 60) | |
hours = math.floor(minutes / 60) | |
minutes = minutes - (hours * 60) | |
is_randomize_seed = False | |
information = ("Start again to get a different result. " if is_randomize_seed else "") + "The sound has been generated in " + ((str(hours) + " h, ") if hours != 0 else "") + ((str(minutes) + " min, ") if hours != 0 or minutes != 0 else "") + str(secondes) + " sec." | |
return ( | |
gr.make_waveform( | |
audio="output.wav", | |
), | |
"output.wav", | |
information, | |
) | |
def predict_on_gpu(prompt, speaker_wav, language): | |
tts.tts_to_file( | |
text=prompt, | |
file_path="output.wav", | |
speaker_wav=speaker_wav, | |
language=language | |
) | |
with gr.Blocks() as interface: | |
gr.HTML("Multi-language Text-to-Speech") | |
gr.HTML( | |
""" | |
<a href="https://huggingface.co/coqui/XTTS-v1">XTTS</a> is a Voice generation model that lets you clone voices into different languages by using just a quick 3-second audio clip. | |
<br/> | |
XTTS is built on previous research, like Tortoise, with additional architectural innovations and training to make cross-language voice cloning and multilingual speech generation possible. | |
<br/> | |
This is the same model that powers our creator application <a href="https://coqui.ai">Coqui Studio</a> as well as the <a href="https://docs.coqui.ai">Coqui API</a>. In production we apply modifications to make low-latency streaming possible. | |
<br/> | |
Leave a star on the Github <a href="https://github.com/coqui-ai/TTS">TTS</a>, where our open-source inference and training code lives. | |
<br/> | |
<p>For faster inference without waiting in the queue, you should duplicate this space and upgrade to GPU via the settings. | |
<br/> | |
<a href="https://huggingface.co/spaces/coqui/xtts?duplicate=true"> | |
<img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> | |
</p> | |
""" | |
) | |
with gr.Column(): | |
prompt = gr.Textbox( | |
label="Text Prompt", | |
info="One or two sentences at a time is better", | |
value="Hello, World! Here is an example of light voice cloning. Try to upload your best audio samples quality", | |
) | |
language = gr.Dropdown( | |
label="Language", | |
info="Select an output language for the synthesised speech", | |
choices=[ | |
["Arabic", "ar"], | |
["Brazilian Portuguese", "pt"], | |
["Mandarin Chinese", "zh-cn"], | |
["Czech", "cs"], | |
["Dutch", "nl"], | |
["English", "en"], | |
["French", "fr"], | |
["German", "de"], | |
["Italian", "it"], | |
["Polish", "pl"], | |
["Russian", "ru"], | |
["Spanish", "es"], | |
["Turkish", "tr"] | |
], | |
max_choices=1, | |
value="en", | |
) | |
gender = gr.Radio(["female", "male"], label="Gender", info="Gender of the voice") | |
audio_file_pth = gr.Audio( | |
label="Reference Audio", | |
#info="Click on the ✎ button to upload your own target speaker audio", | |
type="filepath", | |
value=None, | |
) | |
mic_file_path = gr.Audio(sources=["microphone"], | |
type="filepath", | |
#info="Use your microphone to record audio", | |
label="Use Microphone for Reference") | |
use_mic = gr.Checkbox(label="Check to use Microphone as Reference", | |
value=False, | |
info="Notice: Microphone input may not work properly under traffic",) | |
with gr.Accordion("Advanced options", open = False): | |
debug_mode = gr.Checkbox(label = "Debug mode", value = False, info = "Show intermediate results") | |
submit = gr.Button("🚀 Speak", variant = "primary") | |
waveform_visual = gr.Video(label="Waveform Visual", autoplay=True) | |
synthesised_audio = gr.Audio(label="Synthesised Audio", autoplay=False) | |
information = gr.HTML() | |
submit.click(predict, inputs = [ | |
prompt, language, gender, audio_file_pth, mic_file_path, use_mic | |
], outputs = [ | |
waveform_visual, | |
synthesised_audio, | |
information | |
], scroll_to_output = True) | |
interface.queue().launch(debug=True) |