ATLANTA_TSS / app.py
Fabrice-TIERCELIN's picture
Up to 9 generations
8af8cfc verified
import sys
import os
import re
import time
import math
import torch
import random
import spaces
# By using XTTS you agree to CPML license https://coqui.ai/cpml
os.environ["COQUI_TOS_AGREED"] = "1"
import gradio as gr
from TTS.api import TTS
from TTS.utils.manage import ModelManager
max_64_bit_int = 2**63 - 1
model_names = TTS().list_models()
print(model_names.__dict__)
print(model_names.__dir__())
model_name = "tts_models/multilingual/multi-dataset/xtts_v2"
m = model_name
# Automatic device detection
if torch.cuda.is_available():
# cuda only
device_type = "cuda"
device_selection = "cuda:0"
data_type = torch.float16
else:
# no GPU or Amd
device_type = "cpu"
device_selection = "cpu"
data_type = torch.float32
tts = TTS(model_name, gpu=torch.cuda.is_available())
tts.to(device_type)
def update_output(output_number):
return [
gr.update(visible = (2 <= output_number)),
gr.update(visible = (3 <= output_number)),
gr.update(visible = (4 <= output_number)),
gr.update(visible = (5 <= output_number)),
gr.update(visible = (6 <= output_number)),
gr.update(visible = (7 <= output_number)),
gr.update(visible = (8 <= output_number)),
gr.update(visible = (9 <= output_number))
]
def predict0(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, generation_number, temperature, is_randomize_seed, seed, progress = gr.Progress()):
return predict(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, 0, generation_number, temperature, is_randomize_seed, seed, progress)
def predict1(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, generation_number, temperature, is_randomize_seed, seed, progress = gr.Progress()):
return predict(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, 1, generation_number, temperature, is_randomize_seed, seed, progress)
def predict2(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, generation_number, temperature, is_randomize_seed, seed, progress = gr.Progress()):
return predict(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, 2, generation_number, temperature, is_randomize_seed, seed, progress)
def predict3(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, generation_number, temperature, is_randomize_seed, seed, progress = gr.Progress()):
return predict(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, 3, generation_number, temperature, is_randomize_seed, seed, progress)
def predict4(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, generation_number, temperature, is_randomize_seed, seed, progress = gr.Progress()):
return predict(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, 4, generation_number, temperature, is_randomize_seed, seed, progress)
def predict5(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, generation_number, temperature, is_randomize_seed, seed, progress = gr.Progress()):
return predict(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, 5, generation_number, temperature, is_randomize_seed, seed, progress)
def predict6(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, generation_number, temperature, is_randomize_seed, seed, progress = gr.Progress()):
return predict(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, 6, generation_number, temperature, is_randomize_seed, seed, progress)
def predict7(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, generation_number, temperature, is_randomize_seed, seed, progress = gr.Progress()):
return predict(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, 7, generation_number, temperature, is_randomize_seed, seed, progress)
def predict8(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, generation_number, temperature, is_randomize_seed, seed, progress = gr.Progress()):
return predict(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, 8, generation_number, temperature, is_randomize_seed, seed, progress)
def predict(
prompt,
language,
gender,
audio_file_pth,
mic_file_path,
use_mic,
i,
generation_number,
temperature,
is_randomize_seed,
seed,
progress = gr.Progress()
):
if generation_number <= i:
return (
None,
None,
)
start = time.time()
progress(0, desc = "Preparing data...")
if len(prompt) < 2:
gr.Warning("Please give a longer prompt text")
return (
None,
None,
)
if 50000 < len(prompt):
gr.Warning("Text length limited to 50,000 characters for this demo, please try shorter text")
return (
None,
None,
)
if use_mic:
if mic_file_path is None:
gr.Warning("Please record your voice with Microphone, or uncheck Use Microphone to use reference audios")
return (
None,
None,
)
else:
speaker_wav = mic_file_path
else:
speaker_wav = audio_file_pth
if speaker_wav is None:
if gender == "male":
speaker_wav = "./examples/male.mp3"
else:
speaker_wav = "./examples/female.wav"
output_filename = f"{i + 1}_{re.sub('[^a-zA-Z0-9]', '_', language)}_{re.sub('[^a-zA-Z0-9]', '_', prompt)}"[:180] + ".wav"
try:
if language == "fr":
if m.find("your") != -1:
language = "fr-fr"
if m.find("/fr/") != -1:
language = None
predict_on_gpu(i, generation_number, prompt, speaker_wav, language, output_filename, temperature, is_randomize_seed, seed, progress)
except RuntimeError as e :
if "device-assert" in str(e):
# cannot do anything on cuda device side error, need to restart
gr.Warning("Unhandled Exception encounter, please retry in a minute")
print("Cuda device-assert Runtime encountered need restart")
sys.exit("Exit due to cuda device-assert")
else:
raise e
end = time.time()
secondes = int(end - start)
minutes = math.floor(secondes / 60)
secondes = secondes - (minutes * 60)
hours = math.floor(minutes / 60)
minutes = minutes - (hours * 60)
information = ("Start again to get a different result. " if is_randomize_seed else "") + "The sound has been generated in " + ((str(hours) + " h, ") if hours != 0 else "") + ((str(minutes) + " min, ") if hours != 0 or minutes != 0 else "") + str(secondes) + " sec."
return (
output_filename,
information,
)
@spaces.GPU(duration=60)
def predict_on_gpu(
i,
generation_number,
prompt,
speaker_wav,
language,
output_filename,
temperature,
is_randomize_seed,
seed,
progress
):
progress((i + .5) / generation_number, desc = "Generating the audio #" + str(i + 1) + "...")
if is_randomize_seed:
seed = random.randint(0, max_64_bit_int)
random.seed(seed)
torch.manual_seed(seed)
tts.tts_to_file(
text = prompt,
file_path = output_filename,
speaker_wav = speaker_wav,
language = language,
temperature = temperature
)
with gr.Blocks() as interface:
gr.HTML(
"""
<h1><center>XTTS</center></h1>
<big><center>Generate long vocal from text in several languages following voice freely, without account, without watermark and download it</center></big>
<br/>
<a href="https://huggingface.co/coqui/XTTS-v1">XTTS</a> is a Voice generation model that lets you clone voices into different languages by using just a quick 3-second audio clip.
<br/>
XTTS is built on previous research, like Tortoise, with additional architectural innovations and training to make cross-language voice cloning and multilingual speech generation possible.
<br/>
This is the same model that powers our creator application <a href="https://coqui.ai">Coqui Studio</a> as well as the <a href="https://docs.coqui.ai">Coqui API</a>. In production we apply modifications to make low-latency streaming possible.
<br/>
Leave a star on the Github <a href="https://github.com/coqui-ai/TTS">TTS</a>, where our open-source inference and training code lives.
<br/>
<p>To avoid the queue, you can duplicate this space on CPU, GPU or ZERO space GPU:
<br/>
<a href="https://huggingface.co/spaces/Fabrice-TIERCELIN/Multi-language_Text-to-Speech?duplicate=true">
<img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
</p>
"""
)
with gr.Column():
prompt = gr.Textbox(
label = "Text Prompt",
info = "One or two sentences at a time is better",
value = "Hello, World! Here is an example of light voice cloning. Try to upload your best audio samples quality",
elem_id = "prompt-id",
)
with gr.Group():
language = gr.Dropdown(
label="Language",
info="Select an output language for the synthesised speech",
choices=[
["Arabic", "ar"],
["Brazilian Portuguese", "pt"],
["Mandarin Chinese", "zh-cn"],
["Czech", "cs"],
["Dutch", "nl"],
["English", "en"],
["French", "fr"],
["German", "de"],
["Italian", "it"],
["Polish", "pl"],
["Russian", "ru"],
["Spanish", "es"],
["Turkish", "tr"]
],
max_choices=1,
value="en",
elem_id = "language-id",
)
gr.HTML("More languages <a href='https://huggingface.co/spaces/Brasd99/TTS-Voice-Cloner'>here</a>")
gender = gr.Radio(
["female", "male"],
label="Gender",
info="Gender of the voice",
elem_id = "gender-id",
)
audio_file_pth = gr.Audio(
label="Reference Audio",
#info="Click on the ✎ button to upload your own target speaker audio",
type="filepath",
value=None,
elem_id = "audio-file-pth-id",
)
mic_file_path = gr.Audio(
sources=["microphone"],
type="filepath",
#info="Use your microphone to record audio",
label="Use Microphone for Reference",
elem_id = "mic-file-path-id",
)
use_mic = gr.Checkbox(
label = "Check to use Microphone as Reference",
value = False,
info = "Notice: Microphone input may not work properly under traffic",
elem_id = "use-mic-id",
)
generation_number = gr.Slider(
minimum = 1,
maximum = 9,
step = 1,
value = 1,
label = "Generation number",
info = "How many audios to generate",
elem_id = "generation-number-id"
)
with gr.Accordion("Advanced options", open = False):
temperature = gr.Slider(
minimum = 0,
maximum = 10,
step = .1,
value = .75,
label = "Temperature",
info = "Maybe useless",
elem_id = "temperature-id"
)
randomize_seed = gr.Checkbox(
label = "\U0001F3B2 Randomize seed",
value = True,
info = "If checked, result is always different",
elem_id = "randomize-seed-id"
)
seed = gr.Slider(
minimum = 0,
maximum = max_64_bit_int,
step = 1,
randomize = True,
label = "Seed",
elem_id = "seed-id"
)
submit = gr.Button(
"🚀 Speak",
variant = "primary",
elem_id = "submit-id"
)
synthesised_audio_1 = gr.Audio(
label="Synthesised Audio #1",
autoplay = False,
elem_id = "synthesised-audio-1-id"
)
synthesised_audio_2 = gr.Audio(
label="Synthesised Audio #2",
autoplay = False,
elem_id = "synthesised-audio-2-id",
visible = False
)
synthesised_audio_3 = gr.Audio(
label="Synthesised Audio #3",
autoplay = False,
elem_id = "synthesised-audio-3-id",
visible = False
)
synthesised_audio_4 = gr.Audio(
label="Synthesised Audio #4",
autoplay = False,
elem_id = "synthesised-audio-4-id",
visible = False
)
synthesised_audio_5 = gr.Audio(
label="Synthesised Audio #5",
autoplay = False,
elem_id = "synthesised-audio-5-id",
visible = False
)
synthesised_audio_6 = gr.Audio(
label="Synthesised Audio #6",
autoplay = False,
elem_id = "synthesised-audio-6-id",
visible = False
)
synthesised_audio_7 = gr.Audio(
label="Synthesised Audio #7",
autoplay = False,
elem_id = "synthesised-audio-7-id",
visible = False
)
synthesised_audio_8 = gr.Audio(
label="Synthesised Audio #8",
autoplay = False,
elem_id = "synthesised-audio-8-id",
visible = False
)
synthesised_audio_9 = gr.Audio(
label="Synthesised Audio #9",
autoplay = False,
elem_id = "synthesised-audio-9-id",
visible = False
)
information = gr.HTML()
submit.click(fn = update_output, inputs = [
generation_number
], outputs = [
synthesised_audio_2,
synthesised_audio_3,
synthesised_audio_4,
synthesised_audio_5,
synthesised_audio_6,
synthesised_audio_7,
synthesised_audio_8,
synthesised_audio_9
], queue = False, show_progress = False).success(predict0, inputs = [
prompt,
language,
gender,
audio_file_pth,
mic_file_path,
use_mic,
generation_number,
temperature,
randomize_seed,
seed
], outputs = [
synthesised_audio_1,
information
], scroll_to_output = True).success(predict1, inputs = [
prompt,
language,
gender,
audio_file_pth,
mic_file_path,
use_mic,
generation_number,
temperature,
randomize_seed,
seed
], outputs = [
synthesised_audio_2,
information
], scroll_to_output = True).success(predict2, inputs = [
prompt,
language,
gender,
audio_file_pth,
mic_file_path,
use_mic,
generation_number,
temperature,
randomize_seed,
seed
], outputs = [
synthesised_audio_3,
information
], scroll_to_output = True).success(predict3, inputs = [
prompt,
language,
gender,
audio_file_pth,
mic_file_path,
use_mic,
generation_number,
temperature,
randomize_seed,
seed
], outputs = [
synthesised_audio_4,
information
], scroll_to_output = True).success(predict4, inputs = [
prompt,
language,
gender,
audio_file_pth,
mic_file_path,
use_mic,
generation_number,
temperature,
randomize_seed,
seed
], outputs = [
synthesised_audio_5,
information
], scroll_to_output = True).success(predict5, inputs = [
prompt,
language,
gender,
audio_file_pth,
mic_file_path,
use_mic,
generation_number,
temperature,
randomize_seed,
seed
], outputs = [
synthesised_audio_6,
information
], scroll_to_output = True).success(predict6, inputs = [
prompt,
language,
gender,
audio_file_pth,
mic_file_path,
use_mic,
generation_number,
temperature,
randomize_seed,
seed
], outputs = [
synthesised_audio_7,
information
], scroll_to_output = True).success(predict7, inputs = [
prompt,
language,
gender,
audio_file_pth,
mic_file_path,
use_mic,
generation_number,
temperature,
randomize_seed,
seed
], outputs = [
synthesised_audio_8,
information
], scroll_to_output = True).success(predict8, inputs = [
prompt,
language,
gender,
audio_file_pth,
mic_file_path,
use_mic,
generation_number,
temperature,
randomize_seed,
seed
], outputs = [
synthesised_audio_9,
information
], scroll_to_output = True)
interface.queue(max_size = 5).launch(debug=True)