Spaces:
Running
Running
mvansegbroeck
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -9,8 +9,8 @@ import random
|
|
9 |
from gretel_client import Gretel
|
10 |
from gretel_client.config import GretelClientConfigurationError
|
11 |
|
12 |
-
# Directory for saving processed
|
13 |
-
output_dir = '
|
14 |
os.makedirs(output_dir, exist_ok=True)
|
15 |
|
16 |
# Function to download and convert a PDF to text
|
@@ -22,6 +22,16 @@ def pdf_to_text(pdf_path):
|
|
22 |
text += page.get_text()
|
23 |
return text
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
# Function to split text into chunks
|
26 |
def split_text_into_chunks(text, chunk_size=25, chunk_overlap=5, min_chunk_chars=50):
|
27 |
text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
|
@@ -38,76 +48,82 @@ def save_chunks(file_id, chunks, output_dir):
|
|
38 |
|
39 |
# Function to read chunks from files
|
40 |
def read_chunks_from_files(output_dir):
|
41 |
-
|
42 |
for filename in os.listdir(output_dir):
|
43 |
if filename.endswith('.md') and 'chunk' in filename:
|
44 |
file_id = filename.split('_chunk_')[0]
|
45 |
chunk_path = os.path.join(output_dir, filename)
|
46 |
with open(chunk_path, 'r') as file:
|
47 |
chunk = file.read()
|
48 |
-
if file_id not in
|
49 |
-
|
50 |
-
|
51 |
-
return
|
52 |
|
53 |
-
def
|
54 |
-
|
55 |
if use_example:
|
56 |
example_file_url = "https://gretel-datasets.s3.us-west-2.amazonaws.com/rag/GDPR_2016.pdf"
|
57 |
-
|
58 |
-
if not os.path.exists(
|
59 |
response = requests.get(example_file_url)
|
60 |
-
with open(
|
61 |
file.write(response.content)
|
62 |
-
|
63 |
elif uploaded_files is not None:
|
64 |
for uploaded_file in uploaded_files:
|
65 |
-
|
66 |
-
|
|
|
|
|
67 |
else:
|
68 |
-
chunk_text = "No
|
69 |
return None, 0, chunk_text, None
|
70 |
|
71 |
-
|
72 |
-
for
|
73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
markdown_text = markdownify.markdownify(text)
|
75 |
-
file_id = os.path.splitext(os.path.basename(
|
76 |
markdown_path = os.path.join(output_dir, f"{file_id}.md")
|
77 |
with open(markdown_path, 'w') as file:
|
78 |
file.write(markdown_text)
|
79 |
chunks = split_text_into_chunks(markdown_text, chunk_size=chunk_size, chunk_overlap=chunk_overlap, min_chunk_chars=min_chunk_chars)
|
80 |
save_chunks(file_id, chunks, output_dir)
|
81 |
-
|
82 |
|
83 |
-
|
84 |
-
chunks = pdf_chunks_dict.get(file_id, [])
|
85 |
|
86 |
current_chunk += direction
|
87 |
if current_chunk < 0:
|
88 |
current_chunk = 0
|
89 |
-
elif current_chunk >= len(
|
90 |
-
current_chunk = len(
|
91 |
|
92 |
-
chunk_text =
|
93 |
-
|
94 |
-
return
|
95 |
|
96 |
-
def show_chunks(
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
current_chunk
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
chunk_text = chunks[current_chunk] if chunks else "No chunks available."
|
108 |
-
return chunk_text, current_chunk
|
109 |
-
else:
|
110 |
-
return "No PDF processed.", 0
|
111 |
|
112 |
# Validate API key and return button state
|
113 |
def check_api_key(api_key):
|
@@ -120,7 +136,7 @@ def check_api_key(api_key):
|
|
120 |
status_message = "Invalid"
|
121 |
return gr.update(interactive=is_valid), status_message
|
122 |
|
123 |
-
def generate_synthetic_records(api_key,
|
124 |
|
125 |
gretel = Gretel(api_key=api_key, validate=True, clear=True)
|
126 |
|
@@ -146,10 +162,30 @@ def generate_synthetic_records(api_key, pdf_chunks_dict, num_records):
|
|
146 |
"top_k": 40
|
147 |
}
|
148 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
df_in = pd.DataFrame()
|
150 |
try:
|
151 |
-
documents = list(
|
152 |
-
all_chunks = [(doc, chunk) for doc in documents for chunk in
|
153 |
|
154 |
for _ in range(num_records):
|
155 |
doc, chunk = random.choice(all_chunks)
|
@@ -158,7 +194,13 @@ def generate_synthetic_records(api_key, pdf_chunks_dict, num_records):
|
|
158 |
|
159 |
df = navigator.edit(PROMPT, seed_data=df_in, **GENERATE_PARAMS)
|
160 |
df = df.drop(columns=['text'])
|
161 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
csv_file = os.path.join(output_dir, "synthetic_qa.csv")
|
163 |
df.to_csv(csv_file, index=False)
|
164 |
|
@@ -173,7 +215,7 @@ def download_dataframe(df):
|
|
173 |
return csv_file
|
174 |
|
175 |
# CSS styling to center the logo and prevent right-click download
|
176 |
-
|
177 |
<style>
|
178 |
#logo-container {
|
179 |
display: flex;
|
@@ -188,7 +230,7 @@ css = """
|
|
188 |
|
189 |
# HTML content to include the logo
|
190 |
html_content = f"""
|
191 |
-
{
|
192 |
<div id="logo-container">
|
193 |
<svg width="181" height="72" viewBox="0 0 181 72" fill="none" xmlns="http://www.w3.org/2000/svg">
|
194 |
<g clip-path="url(#clip0_849_78)">
|
@@ -210,37 +252,40 @@ html_content = f"""
|
|
210 |
</div>
|
211 |
"""
|
212 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
213 |
# Gradio interface
|
214 |
-
with gr.Blocks() as demo:
|
215 |
with gr.Row():
|
216 |
with gr.Column(scale=3):
|
217 |
-
# gr.Markdown("# Upload PDFs")
|
218 |
-
# gr.Image("gretel_logo.svg", elem_id="logo", show_label=False)
|
219 |
gr.HTML(html_content)
|
220 |
|
221 |
-
with gr.Tab("Upload
|
222 |
use_example = gr.Checkbox(label="Continue with Example PDF", value=False, interactive=True)
|
223 |
-
uploaded_files = gr.File(label="Upload your PDF
|
224 |
-
# if uploaded_files:
|
225 |
-
# use_example = gr.Checkbox(label="Continue with Example PDF", value=False, interactive=False)
|
226 |
|
227 |
chunk_size = gr.Slider(label="Chunk Size (tokens)", minimum=10, maximum=1500, step=10, value=500)
|
228 |
chunk_overlap = gr.Slider(label="Chunk Overlap (tokens)", minimum=0, maximum=500, step=5, value=100)
|
229 |
min_chunk_chars = gr.Slider(label="Minimum Chunk Characters", minimum=10, maximum=2500, step=10, value=750)
|
230 |
|
231 |
-
process_button = gr.Button("Process
|
232 |
|
233 |
-
|
234 |
-
|
235 |
current_chunk = gr.State(value=0)
|
236 |
|
237 |
chunk_text = gr.Textbox(label="Chunk Text", lines=10)
|
238 |
|
239 |
def toggle_use_example(file_list):
|
240 |
return gr.update(
|
241 |
-
value
|
242 |
interactive=file_list is None or len(file_list) == 0
|
243 |
-
|
244 |
|
245 |
uploaded_files.change(
|
246 |
toggle_use_example,
|
@@ -249,9 +294,9 @@ with gr.Blocks() as demo:
|
|
249 |
)
|
250 |
|
251 |
process_button.click(
|
252 |
-
|
253 |
inputs=[uploaded_files, use_example, chunk_size, chunk_overlap, min_chunk_chars, current_chunk, gr.State(0)],
|
254 |
-
outputs=[
|
255 |
)
|
256 |
|
257 |
with gr.Row():
|
@@ -260,13 +305,13 @@ with gr.Blocks() as demo:
|
|
260 |
|
261 |
prev_button.click(
|
262 |
show_chunks,
|
263 |
-
inputs=[
|
264 |
outputs=[chunk_text, current_chunk]
|
265 |
)
|
266 |
|
267 |
next_button.click(
|
268 |
show_chunks,
|
269 |
-
inputs=[
|
270 |
outputs=[chunk_text, current_chunk]
|
271 |
)
|
272 |
|
@@ -277,28 +322,26 @@ with gr.Blocks() as demo:
|
|
277 |
api_key_input = gr.Textbox(label="Gretel API Key (available at https://console.gretel.ai)", type="password", placeholder="Enter your API key", scale=2)
|
278 |
validate_status = gr.Textbox(label="Validation Status", interactive=False, scale=1)
|
279 |
|
280 |
-
# User-specific settings
|
281 |
num_records = gr.Number(label="Number of Records", value=10)
|
282 |
|
283 |
generate_button = gr.Button("Generate Synthetic Records", interactive=False)
|
284 |
download_link = gr.File(label="Download Link", visible=False)
|
285 |
|
286 |
-
# Validate API key on input change and update button interactivity
|
287 |
api_key_input.change(
|
288 |
fn=check_api_key,
|
289 |
inputs=[api_key_input],
|
290 |
outputs=[generate_button, validate_status]
|
291 |
)
|
292 |
|
293 |
-
output_df = gr.Dataframe(headers=["
|
294 |
|
295 |
-
def generate_and_prepare_download(api_key,
|
296 |
-
df, csv_file = generate_synthetic_records(api_key,
|
297 |
return df, gr.update(value=csv_file, visible=df['value']!=None)
|
298 |
|
299 |
generate_button.click(
|
300 |
fn=generate_and_prepare_download,
|
301 |
-
inputs=[api_key_input,
|
302 |
outputs=[output_df, download_link]
|
303 |
)
|
304 |
|
|
|
9 |
from gretel_client import Gretel
|
10 |
from gretel_client.config import GretelClientConfigurationError
|
11 |
|
12 |
+
# Directory for saving processed files
|
13 |
+
output_dir = 'processed_files'
|
14 |
os.makedirs(output_dir, exist_ok=True)
|
15 |
|
16 |
# Function to download and convert a PDF to text
|
|
|
22 |
text += page.get_text()
|
23 |
return text
|
24 |
|
25 |
+
# Function to read a TXT file
|
26 |
+
def txt_to_text(txt_path):
|
27 |
+
with open(txt_path, 'r') as file:
|
28 |
+
return file.read()
|
29 |
+
|
30 |
+
# Function to read a Markdown file
|
31 |
+
def markdown_to_text(md_path):
|
32 |
+
with open(md_path, 'r') as file:
|
33 |
+
return file.read()
|
34 |
+
|
35 |
# Function to split text into chunks
|
36 |
def split_text_into_chunks(text, chunk_size=25, chunk_overlap=5, min_chunk_chars=50):
|
37 |
text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
|
|
|
48 |
|
49 |
# Function to read chunks from files
|
50 |
def read_chunks_from_files(output_dir):
|
51 |
+
chunks_dict = {}
|
52 |
for filename in os.listdir(output_dir):
|
53 |
if filename.endswith('.md') and 'chunk' in filename:
|
54 |
file_id = filename.split('_chunk_')[0]
|
55 |
chunk_path = os.path.join(output_dir, filename)
|
56 |
with open(chunk_path, 'r') as file:
|
57 |
chunk = file.read()
|
58 |
+
if file_id not in chunks_dict:
|
59 |
+
chunks_dict[file_id] = []
|
60 |
+
chunks_dict[file_id].append(chunk)
|
61 |
+
return chunks_dict
|
62 |
|
63 |
+
def process_files(uploaded_files, use_example, chunk_size, chunk_overlap, min_chunk_chars, current_chunk, direction):
|
64 |
+
selected_files = []
|
65 |
if use_example:
|
66 |
example_file_url = "https://gretel-datasets.s3.us-west-2.amazonaws.com/rag/GDPR_2016.pdf"
|
67 |
+
file_path = os.path.join(output_dir, example_file_url.split('/')[-1])
|
68 |
+
if not os.path.exists(file_path):
|
69 |
response = requests.get(example_file_url)
|
70 |
+
with open(file_path, 'wb') as file:
|
71 |
file.write(response.content)
|
72 |
+
selected_files = [file_path]
|
73 |
elif uploaded_files is not None:
|
74 |
for uploaded_file in uploaded_files:
|
75 |
+
file_path = os.path.join(output_dir, uploaded_file.name)
|
76 |
+
# with open(file_path, 'wb') as file:
|
77 |
+
# file.write(uploaded_file.read())
|
78 |
+
selected_files.append(file_path)
|
79 |
else:
|
80 |
+
chunk_text = "No files processed"
|
81 |
return None, 0, chunk_text, None
|
82 |
|
83 |
+
chunks_dict = {}
|
84 |
+
for file_path in selected_files:
|
85 |
+
file_extension = os.path.splitext(file_path)[1].lower()
|
86 |
+
if file_extension == '.pdf':
|
87 |
+
text = pdf_to_text(file_path)
|
88 |
+
elif file_extension == '.txt':
|
89 |
+
text = txt_to_text(file_path)
|
90 |
+
elif file_extension == '.md':
|
91 |
+
text = markdown_to_text(file_path)
|
92 |
+
else:
|
93 |
+
text = ""
|
94 |
+
|
95 |
markdown_text = markdownify.markdownify(text)
|
96 |
+
file_id = os.path.splitext(os.path.basename(file_path))[0]
|
97 |
markdown_path = os.path.join(output_dir, f"{file_id}.md")
|
98 |
with open(markdown_path, 'w') as file:
|
99 |
file.write(markdown_text)
|
100 |
chunks = split_text_into_chunks(markdown_text, chunk_size=chunk_size, chunk_overlap=chunk_overlap, min_chunk_chars=min_chunk_chars)
|
101 |
save_chunks(file_id, chunks, output_dir)
|
102 |
+
chunks_dict[file_id + file_extension] = chunks
|
103 |
|
104 |
+
all_chunks = [chunk for chunks in chunks_dict.values() for chunk in chunks]
|
|
|
105 |
|
106 |
current_chunk += direction
|
107 |
if current_chunk < 0:
|
108 |
current_chunk = 0
|
109 |
+
elif current_chunk >= len(all_chunks):
|
110 |
+
current_chunk = len(all_chunks) - 1
|
111 |
|
112 |
+
chunk_text = all_chunks[current_chunk] if all_chunks else "No chunks available."
|
113 |
+
|
114 |
+
return chunks_dict, selected_files, chunk_text, current_chunk#, use_example_update
|
115 |
|
116 |
+
def show_chunks(chunks_dict, selected_files, current_chunk, direction):
|
117 |
+
all_chunks = [chunk for chunks in chunks_dict.values() for chunk in chunks]
|
118 |
+
|
119 |
+
current_chunk += direction
|
120 |
+
if current_chunk < 0:
|
121 |
+
current_chunk = 0
|
122 |
+
elif current_chunk >= len(all_chunks):
|
123 |
+
current_chunk = len(all_chunks) - 1
|
124 |
+
|
125 |
+
chunk_text = all_chunks[current_chunk] if all_chunks else "No chunks available."
|
126 |
+
return chunk_text, current_chunk
|
|
|
|
|
|
|
|
|
127 |
|
128 |
# Validate API key and return button state
|
129 |
def check_api_key(api_key):
|
|
|
136 |
status_message = "Invalid"
|
137 |
return gr.update(interactive=is_valid), status_message
|
138 |
|
139 |
+
def generate_synthetic_records(api_key, chunks_dict, num_records):
|
140 |
|
141 |
gretel = Gretel(api_key=api_key, validate=True, clear=True)
|
142 |
|
|
|
162 |
"top_k": 40
|
163 |
}
|
164 |
|
165 |
+
EVAL_PROMPT = """
|
166 |
+
Add the following columns to the provided table based on the generated text in the `answer` column:
|
167 |
+
* conformance: A rating from 'Poor' to 'Excellent' indicating the conformance of the generated text to the requested format, tags, and descriptions provided.
|
168 |
+
- 'Poor', 'Fair', 'Good', 'Very Good', 'Excellent'
|
169 |
+
* quality: A rating from 'Poor' to 'Excellent' based on the grammatical correctness, coherence, and relevance of the generated text.
|
170 |
+
- 'Poor', 'Fair', 'Good', 'Very Good', 'Excellent'
|
171 |
+
* toxicity: A rating from 'Non-Toxic' to 'Highly Toxic' indicating the level of toxic content in the generated text.
|
172 |
+
- 'Non-Toxic', 'Moderately Toxic', 'Highly Toxic'
|
173 |
+
* bias: A rating from 'Unbiased' to 'Heavily Biased' indicating the level of unintended biases in the generated text.
|
174 |
+
- 'Unbiased', 'Moderately Biased', 'Heavily Biased'
|
175 |
+
* groundedness: A rating from 'Ungrounded' to 'Fully Grounded' indicating the level of factual correctness in the generated text.
|
176 |
+
- 'Ungrounded', 'Moderately Grounded', 'Fully Grounded'
|
177 |
+
"""
|
178 |
+
|
179 |
+
EVAL_GENERATE_PARAMS = {
|
180 |
+
"temperature": 0.2,
|
181 |
+
"top_p": 0.5,
|
182 |
+
"top_k": 40
|
183 |
+
}
|
184 |
+
|
185 |
df_in = pd.DataFrame()
|
186 |
try:
|
187 |
+
documents = list(chunks_dict.keys())
|
188 |
+
all_chunks = [(doc, chunk) for doc in documents for chunk in chunks_dict[doc]]
|
189 |
|
190 |
for _ in range(num_records):
|
191 |
doc, chunk = random.choice(all_chunks)
|
|
|
194 |
|
195 |
df = navigator.edit(PROMPT, seed_data=df_in, **GENERATE_PARAMS)
|
196 |
df = df.drop(columns=['text'])
|
197 |
+
df = navigator.edit(EVAL_PROMPT, seed_data=df, **EVAL_GENERATE_PARAMS)
|
198 |
+
df.rename(columns={
|
199 |
+
"question": "synthetic_question",
|
200 |
+
"answer": "synthetic_answer",
|
201 |
+
"context": "original_context"
|
202 |
+
}, inplace=True)
|
203 |
+
|
204 |
csv_file = os.path.join(output_dir, "synthetic_qa.csv")
|
205 |
df.to_csv(csv_file, index=False)
|
206 |
|
|
|
215 |
return csv_file
|
216 |
|
217 |
# CSS styling to center the logo and prevent right-click download
|
218 |
+
logo_css = """
|
219 |
<style>
|
220 |
#logo-container {
|
221 |
display: flex;
|
|
|
230 |
|
231 |
# HTML content to include the logo
|
232 |
html_content = f"""
|
233 |
+
{logo_css}
|
234 |
<div id="logo-container">
|
235 |
<svg width="181" height="72" viewBox="0 0 181 72" fill="none" xmlns="http://www.w3.org/2000/svg">
|
236 |
<g clip-path="url(#clip0_849_78)">
|
|
|
252 |
</div>
|
253 |
"""
|
254 |
|
255 |
+
# Define custom CSS to set the font size
|
256 |
+
css = """
|
257 |
+
#small span{
|
258 |
+
font-size: 0.8em;
|
259 |
+
}
|
260 |
+
"""
|
261 |
+
|
262 |
# Gradio interface
|
263 |
+
with gr.Blocks(css=css) as demo:
|
264 |
with gr.Row():
|
265 |
with gr.Column(scale=3):
|
|
|
|
|
266 |
gr.HTML(html_content)
|
267 |
|
268 |
+
with gr.Tab("Upload Files"):
|
269 |
use_example = gr.Checkbox(label="Continue with Example PDF", value=False, interactive=True)
|
270 |
+
uploaded_files = gr.File(label="Upload your files (TXT, Markdown, or PDF)", file_count="multiple", file_types=[".pdf", ".txt", ".md"])
|
|
|
|
|
271 |
|
272 |
chunk_size = gr.Slider(label="Chunk Size (tokens)", minimum=10, maximum=1500, step=10, value=500)
|
273 |
chunk_overlap = gr.Slider(label="Chunk Overlap (tokens)", minimum=0, maximum=500, step=5, value=100)
|
274 |
min_chunk_chars = gr.Slider(label="Minimum Chunk Characters", minimum=10, maximum=2500, step=10, value=750)
|
275 |
|
276 |
+
process_button = gr.Button("Process Files")
|
277 |
|
278 |
+
chunks_dict = gr.State()
|
279 |
+
selected_files = gr.State()
|
280 |
current_chunk = gr.State(value=0)
|
281 |
|
282 |
chunk_text = gr.Textbox(label="Chunk Text", lines=10)
|
283 |
|
284 |
def toggle_use_example(file_list):
|
285 |
return gr.update(
|
286 |
+
value=False,
|
287 |
interactive=file_list is None or len(file_list) == 0
|
288 |
+
)
|
289 |
|
290 |
uploaded_files.change(
|
291 |
toggle_use_example,
|
|
|
294 |
)
|
295 |
|
296 |
process_button.click(
|
297 |
+
process_files,
|
298 |
inputs=[uploaded_files, use_example, chunk_size, chunk_overlap, min_chunk_chars, current_chunk, gr.State(0)],
|
299 |
+
outputs=[chunks_dict, selected_files, chunk_text, current_chunk]
|
300 |
)
|
301 |
|
302 |
with gr.Row():
|
|
|
305 |
|
306 |
prev_button.click(
|
307 |
show_chunks,
|
308 |
+
inputs=[chunks_dict, selected_files, current_chunk, gr.State(-1)],
|
309 |
outputs=[chunk_text, current_chunk]
|
310 |
)
|
311 |
|
312 |
next_button.click(
|
313 |
show_chunks,
|
314 |
+
inputs=[chunks_dict, selected_files, current_chunk, gr.State(1)],
|
315 |
outputs=[chunk_text, current_chunk]
|
316 |
)
|
317 |
|
|
|
322 |
api_key_input = gr.Textbox(label="Gretel API Key (available at https://console.gretel.ai)", type="password", placeholder="Enter your API key", scale=2)
|
323 |
validate_status = gr.Textbox(label="Validation Status", interactive=False, scale=1)
|
324 |
|
|
|
325 |
num_records = gr.Number(label="Number of Records", value=10)
|
326 |
|
327 |
generate_button = gr.Button("Generate Synthetic Records", interactive=False)
|
328 |
download_link = gr.File(label="Download Link", visible=False)
|
329 |
|
|
|
330 |
api_key_input.change(
|
331 |
fn=check_api_key,
|
332 |
inputs=[api_key_input],
|
333 |
outputs=[generate_button, validate_status]
|
334 |
)
|
335 |
|
336 |
+
output_df = gr.Dataframe(headers=["",], wrap=True, visible=True, elem_id="small")
|
337 |
|
338 |
+
def generate_and_prepare_download(api_key, chunks_dict, num_records):
|
339 |
+
df, csv_file = generate_synthetic_records(api_key, chunks_dict, num_records)
|
340 |
return df, gr.update(value=csv_file, visible=df['value']!=None)
|
341 |
|
342 |
generate_button.click(
|
343 |
fn=generate_and_prepare_download,
|
344 |
+
inputs=[api_key_input, chunks_dict, num_records],
|
345 |
outputs=[output_df, download_link]
|
346 |
)
|
347 |
|