Spaces:
Runtime error
Runtime error
Commit
·
3ac452f
1
Parent(s):
84db4ad
first commit
Browse files- Dockerfile +30 -0
- app.py +68 -0
- requirements.txt +8 -0
Dockerfile
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Use an official Python base image
|
2 |
+
FROM python:3.10-slim
|
3 |
+
|
4 |
+
# Set environment variables to avoid prompts during package installation
|
5 |
+
ENV DEBIAN_FRONTEND=noninteractive
|
6 |
+
|
7 |
+
# Install system dependencies for OCR (Tesseract) and other libraries
|
8 |
+
RUN apt-get update && apt-get install -y \
|
9 |
+
tesseract-ocr \
|
10 |
+
libtesseract-dev \
|
11 |
+
libgl1-mesa-glx \
|
12 |
+
&& rm -rf /var/lib/apt/lists/*
|
13 |
+
|
14 |
+
# Set working directory
|
15 |
+
WORKDIR /app
|
16 |
+
|
17 |
+
# Copy the requirements file
|
18 |
+
COPY requirements.txt .
|
19 |
+
|
20 |
+
# Install Python dependencies
|
21 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
22 |
+
|
23 |
+
# Copy the application files
|
24 |
+
COPY . .
|
25 |
+
|
26 |
+
# Expose the port Gradio uses (default is 7860)
|
27 |
+
EXPOSE 7860
|
28 |
+
|
29 |
+
# Run the application
|
30 |
+
CMD ["python", "app.py"]
|
app.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
import json
|
6 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
7 |
+
import pytesseract
|
8 |
+
|
9 |
+
# Load Object Detection Pipeline
|
10 |
+
obj_detect = pipeline("object-detection", model="facebook/detr-resnet-50", device=-1)
|
11 |
+
|
12 |
+
# Load Qwen for Code Generation
|
13 |
+
MODEL_NAME = "Qwen/Qwen2.5-Coder-3B"
|
14 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
15 |
+
dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
16 |
+
|
17 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
18 |
+
model = AutoModelForCausalLM.from_pretrained(
|
19 |
+
MODEL_NAME, torch_dtype=dtype, device_map="auto"
|
20 |
+
)
|
21 |
+
|
22 |
+
# Define the process_image function (same as your original logic)
|
23 |
+
def process_image(img):
|
24 |
+
opencv_image = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
|
25 |
+
img_height, img_width, _ = opencv_image.shape
|
26 |
+
|
27 |
+
# Run Object Detection
|
28 |
+
detections = obj_detect(img)
|
29 |
+
|
30 |
+
# Run OCR
|
31 |
+
text_data = pytesseract.image_to_string(opencv_image)
|
32 |
+
|
33 |
+
ui_json = {
|
34 |
+
"id": "generated-ui",
|
35 |
+
"name": "Generated UI",
|
36 |
+
"components": [],
|
37 |
+
"ocr_text": text_data.strip()
|
38 |
+
}
|
39 |
+
|
40 |
+
for det in detections:
|
41 |
+
ui_json["components"].append({
|
42 |
+
"id": f"{det['label']}-{len(ui_json['components']) + 1}",
|
43 |
+
"name": det["label"].capitalize(),
|
44 |
+
"confidence": round(det["score"], 2),
|
45 |
+
})
|
46 |
+
|
47 |
+
metadata_str = json.dumps(ui_json, indent=2)
|
48 |
+
|
49 |
+
# Generate React Code
|
50 |
+
prompt = f"Generate a React component from this metadata:\n{metadata_str}"
|
51 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
52 |
+
with torch.no_grad():
|
53 |
+
output = model.generate(**inputs, max_length=1024)
|
54 |
+
code_response = tokenizer.decode(output[0], skip_special_tokens=True)
|
55 |
+
|
56 |
+
return metadata_str, code_response
|
57 |
+
|
58 |
+
# Gradio Interface
|
59 |
+
interface = gr.Interface(
|
60 |
+
fn=process_image,
|
61 |
+
inputs=gr.Image(type="pil"),
|
62 |
+
outputs=["text", "text"],
|
63 |
+
title="Screenshot → Metadata & React Code",
|
64 |
+
description="Upload a UI screenshot and get structured metadata + React code.",
|
65 |
+
)
|
66 |
+
|
67 |
+
# Run in Docker with 0.0.0.0 to allow external access
|
68 |
+
interface.launch(server_name="0.0.0.0", server_port=7860)
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
torch
|
3 |
+
opencv-python-headless
|
4 |
+
numpy
|
5 |
+
transformers
|
6 |
+
pytesseract
|
7 |
+
timm
|
8 |
+
accelerate>=0.26.0
|