|
import gradio as gr |
|
import tensorflow as tf |
|
from PIL import Image |
|
import numpy as np |
|
|
|
|
|
model_path = 'chess_piece_classifier_mobilenet.keras' |
|
|
|
|
|
model = tf.keras.models.load_model(model_path) |
|
|
|
|
|
labels = ['Black bishop', 'Black king', 'Black knight', 'Black pawn', 'Black queen', 'Black rook', 'White bishop', 'White king', 'White knight', 'White pawn', 'White queen', 'White rook'] |
|
|
|
|
|
def predict(image): |
|
try: |
|
|
|
image = image.resize((224, 224)) |
|
image = np.array(image) / 255.0 |
|
image = np.expand_dims(image, axis=0) |
|
|
|
|
|
predictions = model.predict(image) |
|
confidences = {labels[i]: float(predictions[0][i]) for i in range(len(labels))} |
|
|
|
return confidences |
|
except Exception as e: |
|
return str(e) |
|
|
|
|
|
iface = gr.Interface( |
|
fn=predict, |
|
inputs=gr.Image(type="pil"), |
|
outputs=gr.Label(), |
|
description="Chess Piece Classifier", |
|
examples=[ |
|
['data/example1.jpg'], |
|
['data/example2.jpg'], |
|
['data/example3.jpg'], |
|
['data/example4.jpg'], |
|
['data/example5.jpg'], |
|
['data/example6.jpg'], |
|
['data/example7.jpg'], |
|
['data/example8.jpg'], |
|
['data/example9.jpg'], |
|
['data/example10.jpg'], |
|
['data/example11.jpg'], |
|
['data/example12.jpg'] |
|
] |
|
) |
|
|
|
if __name__ == "__main__": |
|
iface.launch() |
|
|