File size: 15,069 Bytes
aaffe1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cdb1145
 
 
a94b00b
aaffe1f
 
9067622
aaffe1f
 
 
 
 
a94b00b
 
 
 
 
 
 
 
 
aaffe1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9067622
 
 
 
 
aaffe1f
 
 
 
 
 
 
 
 
 
 
 
 
9067622
 
91b09b3
9067622
 
 
fd4b691
 
 
 
9067622
 
 
aaffe1f
 
 
 
 
 
 
 
 
 
 
6873a01
aaffe1f
 
 
 
 
 
 
 
 
3349595
aaffe1f
 
 
 
 
9b62d45
 
3349595
9067622
 
 
 
 
 
 
3349595
9067622
 
 
 
 
 
 
 
3349595
9067622
 
 
 
 
 
 
3349595
9067622
 
 
 
 
 
 
b424351
 
 
 
 
 
 
 
 
e1b211d
b424351
 
e1b211d
b424351
 
 
 
9067622
baf1b11
9b62d45
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
import json
import subprocess
from cltk.core.data_types import Process
from dataclasses import dataclass
from copy import deepcopy
from boltons.cacheutils import cachedproperty
from cltk.core.data_types import Doc, Word
import subprocess
import re
import string
from cltk.tokenizers.lat.lat import LatinWordTokenizer
from cltk.core.data_types import Process, Pipeline
from cltk.languages.utils import get_lang
from cltk.alphabet.processes import LatinNormalizeProcess
from cltk.nlp import NLP
from cltk.text.processes import DefaultPunctuationRemovalProcess
from fastapi import FastAPI
from fastapi.responses import FileResponse
from fastapi.staticfiles import StaticFiles
from fastapi.middleware.cors import CORSMiddleware
from typing import Optional
import json
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import morph_simplifier
import json
import os

app = FastAPI()
origins = ["*"]

app.add_middleware(
    CORSMiddleware,
    allow_origins=origins,
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

@dataclass
class LatinWhitakersWordsMorphology(Process):
    """A simple ``Process`` for giving the stem and morphological features

       of a latin word using Whitakers Words

    """
    
    language: str = None
    
    @cachedproperty
    def algorithm(self):
      return None
    def parse_word(self, tup):
        index, (word_tup) = tup
        word_obj, word_lookup = word_tup
        word_obj.word_lookup = word_lookup
        word_lookup = word_lookup.strip()
        if word_obj.string in  [',', ":", "'", '"', ".", ";"] or "UNKNOWN" in word_lookup or "" == word_lookup:
            word_obj.stem = word_obj.string
            word_obj.morph = "OTHER"
            word_obj.case = ""
        else:
            letter_swap = False

            # shit like XIIX, why was this written??
            if "Bad Roman Numeral?" in word_lookup:
              word_obj.stem = word_obj.string
              word_obj.morph = "NUM20XXXCARD"
              word_obj.case = ""
              return word_obj
            
            if "WORD_EDIT" in word_lookup:
              letter_swap = True
              word_lookup = word_lookup.replace("WORD_EDIT\n", "")

            # form of sum/esse/
            if word_lookup[0] == '.':
              word_obj.stem = "esse"
              word_obj.morph = "".join(word_lookup.split("\n")[0].split(" ")[1:]).replace("Late", "").replace("Early", "").replace("N98XXM", "ADV")
              word_obj.case = word_obj.string
              return word_obj

            try:
              # alicuius - [XXXAO] starts the line
              if word_lookup.split("\n")[1].strip()[0] == "[":
                sp = word_lookup.split("\n")
                word_lookup = sp[0] + "\n" + sp[2]
            except Exception as e:
              print(e)
            #i/j u/v d/t swap, need to drop another line 
            if word_lookup.split(" ")[0].split(".")[0] == "Word": 
              word_lookup = "\n".join(word_lookup.split("\n")[2:])
              letter_swap = True

            
            
            # Cardinal number
            if "CARD" in word_lookup and "." not in word_lookup.split(" ")[0]:
              word_obj.stem = word_lookup.split(" ")[0]
              word_obj.morph = "".join(word_lookup.split("\n")[0].split(" ")[1:]).replace("Late", "").replace("Early", "").replace("N98XXM", "ADV")
              word_obj.case = ""
              return word_obj
            if word_lookup.split(" ")[0].replace(".", "").replace("ivi", "ii").replace("v", "u").replace("j", "i").strip().lower() != word_obj.string.lower().replace("j", "i").replace("v.i", "").replace("ivi", "ii").replace("-", "").replace("v", "u"):
                if word_lookup.split(" ")[0].replace(".", "").strip().lower() == 'special_replace':
                  word_obj.stem = word_obj.string
                  word_obj.morph = "V51PRESACTIVEIND3P"
                  word_obj.case = ""

                  return word_obj
                elif word_lookup.split(" ")[0].replace(".", "").strip().lower() == 'iri_special':
                  word_obj.stem = word_obj.string
                  word_obj.morph = "V31FUTPASSIVEINF0X"
                  word_obj.case = ""
                  return word_obj
                if index != self.l - 1 and not letter_swap:
                    try:
                        word_lookup = word_lookup.split("\n")[2]
                        word_obj.word_lookup = word_lookup
                    except:
                        word_obj.word_lookup = word_lookup
            word_obj.stem = word_lookup.split(" ")[0].split(".")[0]
            word_obj.morph = "".join(word_lookup.split("\n")[0].split(" ")[1:]).replace("Late", "").replace("Early", "").replace("N98XXM", "ADV")
            word_obj.case = word_lookup.split(" ")[0].split(".")[1] if "." in word_lookup.split(" ")[0] else ""
        return word_obj

    def run(self, input_doc: Doc) -> Doc:
        output_doc = deepcopy(input_doc)
        output_doc.words = [word for word in output_doc.words if word is not None and word.string != '-']
        self.l = len(output_doc.words)
        words =re.sub(r"SUPINE \+ iri.*\n", "\n\nIRI_SPECIAL ", re.sub(r"PPL\+sunt.*\n\nsum|Syncope   s => vis *\n\n", "", "\n".join(re.split(r"\n=>|=>\n",subprocess.check_output(["./words"],input=" ".join([word.string.replace("j","i") for word in output_doc.words]), cwd='./bin/', text=True), maxsplit=1)[1].split("\n")[:-6])
        .replace("MORE - hit RETURN/ENTER to continue\nUnexpected exception in PAUSE", "") \
        .replace("\n*", '\n') \
        .replace("PERF PASSIVE PPL + verb TO_BE => PASSIVE perfect system", "\n\nSPECIAL_REPLACE") \
        .replace("FUT PASSIVE PPL + esse => PRES PASSIVE INF", "\n\nSPECIAL_REPLACE") \
        .replace("\nFUT PASSIVE PPL + verb TO_BE => PASSIVE Periphrastic - should/ought/had to", "\n\nSPECIAL_REPLACE") \
        .replace("\nFUT ACTIVE PPL + verb TO_BE => ACTIVE Periphrastic - about to, going to", "\n\nSPECIAL_REPLACE") \
        .replace("\nFUT PASSIVE PPL + esse => PASSIVE Periphrastic - should/ought/had to", "\n\nSPECIAL_REPLACE") \
        .replace("\nFUT ACT PPL+fuisse => PERF ACT INF Periphrastic - to have been about/going to", "\n\nSPECIAL_REPLACE") \
        .replace("\nFUT PASSIVE PPL + fuisse => PERF PASSIVE INF Periphrastic - about to, going to", "\n\nSPECIAL_REPLACE") \
        .replace("\nFUT ACTIVE PPL + esse => ACTIVE Periphrastic - about to, going to", "\n\nSPECIAL_REPLACE") \
        .replace("\nFUT ACTIVE PPL + esse => PRES Periphastic/FUT ACTIVE INF - be about/going to", "\n\nSPECIAL_REPLACE") \
        .replace("Syncope   s => vis\n\n", "WORD_EDIT") \
        .replace("Syncope   s => vis    \n\n", "WORD_EDIT") \
        .replace("\nSyncope  ii => ivi   \nSyncopated perfect ivi can drop 'v' without contracting vowel", "WORD_EDIT") \
        .replace("Syncope   s => vis   \nSyncopated perfect often drops the 'v' and contracts vowel", "WORD_EDIT") \
        .replace("\nPERF PASSIVE PPL + esse => PERF PASSIVE INF", "\n\nSPECIAL_REPLACE"))) \
        .replace("\nSlur sub/su~         \nAn initial 'sub' may be rendered by su~", "WORD_EDIT") \
        .replace("\nSyncope   r => v.r   \n\n", "WORD_EDIT") \
        .split("\n\n")
        output_tokens = list(map(self.parse_word, enumerate(zip(output_doc.words, words))))
        return output_tokens

@dataclass
class LatinTokenizationProcessWithPropers(Process):
    @cachedproperty
    def algorithm(self):
        return LatinWordTokenizer()

    def run(self, input_doc: Doc) -> Doc:
        output_doc = deepcopy(input_doc)
        output_doc.words = []
        tokenizer_obj = self.algorithm
        enclitics_exceptions=LatinWordTokenizer.EXCEPTIONS + ["beniamin", "mosen", "hegesian", "bitumen", "aaron", "aristomene", 'disan', 'aran', 'lothan', 'amdan', 'amdan', 'esban', 'iethran', 'charan', "restitue", "resen"]
        tokens = tokenizer_obj.tokenize(output_doc.raw, enclitics_exceptions=enclitics_exceptions, enclitics=['que', 'n', 'ne', 'ue', 've', 'st'])
        indices = tokenizer_obj.compute_indices(output_doc.raw, tokens)
        for index, token in enumerate(tokens):
            word_obj = Word(
                string=token,
                index_token=index,
                index_char_start=indices[index],
                index_char_stop=indices[index] + len(token),
            )
            output_doc.words.append(word_obj)
        return output_doc

pipe_morph = Pipeline(description="A custom Latin pipeline", processes=[LatinNormalizeProcess, LatinTokenizationProcessWithPropers, DefaultPunctuationRemovalProcess, LatinWhitakersWordsMorphology], language=get_lang("lat"))

nlp_morph = NLP(language='lat', custom_pipeline = pipe_morph, suppress_banner=True)


def process_line_morph(line):
    an = nlp_morph.analyze(line.translate(str.maketrans('', '', string.punctuation)).replace('(','').replace(')','').replace("β€œ", "").replace("”", "").replace("β€”", ":"))
    output_line = ""
    for word in an:
      if not word:
          continue
      output_line += word.stem +  (" " + word.morph + " " if word.morph != "" else " ")
    return output_line[:-1].replace("\n", "").replace("  ", " ")

def process_line_morph_simplified(line):
    an = nlp_morph.analyze(line.translate(str.maketrans('', '', string.punctuation)).replace('(','').replace(')','').replace("β€œ", "").replace("”", "").replace("β€”", ":"))
    output_line = ""
    for word in an:
      if not word:
          continue
      output_line += word.stem +  (" " + morph_simplifier.simplify_form(word.morph) + " " if word.morph != "" else " ")
    return output_line[:-1].replace("\n", "").replace("  ", " ")


def process_line_case(line):
    an = nlp_morph.analyze(line.translate(str.maketrans('', '', string.punctuation)).replace('(','').replace(')','').replace("β€œ", "").replace("”", "").replace("β€”", ":"))
    output_line = ""
    for word in an:
      if not word:
          continue
      output_line += (word.stem) +  (" CASE_" + word.case + " " if word.case != "" else " ")
    return output_line[:-1].replace("\n", "").replace("  ", " ")

base_tokenizer = AutoTokenizer.from_pretrained("grosenthal/la_en_base")
morph_tokenizer = AutoTokenizer.from_pretrained("grosenthal/la_en_morphology")
morph_simplified_tokenizer = AutoTokenizer.from_pretrained("grosenthal/la_en_morph_simplified")
case_tokenizer = AutoTokenizer.from_pretrained("grosenthal/la_en_case")

base_model = AutoModelForSeq2SeqLM.from_pretrained("grosenthal/la_en_base")
morph_model = AutoModelForSeq2SeqLM.from_pretrained("grosenthal/la_en_morphology")
morph_simplified_model = AutoModelForSeq2SeqLM.from_pretrained("grosenthal/la_en_morph_simplified")
case_model = AutoModelForSeq2SeqLM.from_pretrained("grosenthal/la_en_case")


def tokenize(tokenizer, text):
  split_text = tokenizer.tokenize(text, truncation=True, max_length=128)
  input_ids = tokenizer(text, truncation=True, max_length=128)['input_ids']
  return {
    "text": split_text,
    "ids": input_ids
  }

tokenize_base = lambda t: tokenize(base_tokenizer, t)
tokenize_morph = lambda t: tokenize(morph_tokenizer, t)
tokenize_morph_simplified = lambda t: tokenize(morph_simplified_tokenizer, t)
tokenize_case = lambda t: tokenize(case_tokenizer, t)

def translate(model, tokenizer, text):
  translated = model.generate(**tokenizer(text, return_tensors="pt", padding=True, truncation=True))
  translated_line = [tokenizer.decode(t, skip_special_tokens=True) for t in translated]
  return translated_line

translate_base = lambda t: translate(base_model, base_tokenizer, t)
translate_morph = lambda t: translate(morph_model, morph_tokenizer, t)
translate_morph_simplified = lambda t: translate(morph_simplified_model, morph_simplified_tokenizer, t)
translate_case = lambda t: translate(case_model, case_tokenizer, t)



def process_handler(text):
    print("in handler")
    morph_text = process_line_morph(text)
    morph_simplified_text = process_line_morph_simplified(text)
    case_text = process_line_case(text)

    return {
        'processed_texts':{
          'base': text,
          'morph': morph_text,
          'morph_simplified': morph_simplified_text,
          'case': case_text
        },
        'tokenized':{
          'base': tokenize_base(text),
          'morph': tokenize_morph(morph_text),
          'morph_simplified': tokenize_morph_simplified(morph_simplified_text),
          'case': tokenize_case(case_text),
        }
    }
   
@app.get('/process/')
async def process(text: Optional[str] = None):
    if text is not None:
        result = process_handler(text)
        return json.dumps(result)
    else:
        return json.dumps({"error": "Missing required parameter 'text'"}), 400

@app.get('/translate_base/')
async def translate_base_http(text: Optional[str] = None):
    if text is not None:
        result = translate_base(text)
        return json.dumps(result)
    else:
        return json.dumps({"error": "Missing required parameter 'text'"}), 400

@app.get('/translate_case/')
async def translate_case_http(text: Optional[str] = None):
    if text is not None:
        result = translate_case(text)
        return json.dumps(result)
    else:
        return json.dumps({"error": "Missing required parameter 'text'"}), 400


@app.get('/translate_morph/')
async def translate_morph_http(text: Optional[str] = None):
    if text is not None:
        result = translate_morph(text)
        return json.dumps(result)
    else:
        return json.dumps({"error": "Missing required parameter 'text'"}), 400

@app.get('/translate_morph_simplified/')
async def translate_morph_simplified_http(text: Optional[str] = None):
    if text is not None:
        result = translate_morph_simplified(text)
        return json.dumps(result)
    else:
        return json.dumps({"error": "Missing required parameter 'text'"}), 400

@app.get('/translate_all/')
async def translate_all(text: Optional[str] = None):
    if text is not None:
        base_result = translate_base(text)
        case_result = translate_case(process_line_case(text))
        morph_result = translate_morph(process_line_morph(text))
        morph_simplified_result = translate_morph_simplified(process_line_morph_simplified(text))

        return json.dumps({
          'base': base_result,
          'case': case_result,
          'morph': morph_result,
          'morph_simplified': morph_simplified_result
        })
    else:
        return json.dumps({"error": "Missing required parameter 'text'"}), 400


app.mount("/", StaticFiles(directory="src/aineid/build", html=True), name="static")

@app.get("/")
def index() -> FileResponse:
    return FileResponse(path="/app/static/index.html", media_type="text/html")