File size: 19,296 Bytes
9b74a5d
 
 
 
 
 
 
 
 
 
 
 
b2d95df
9b74a5d
 
 
 
 
 
 
39b62ef
 
9b74a5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3813d1f
9b74a5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2d95df
9b74a5d
e16ecd0
 
 
9b74a5d
 
 
 
 
 
39b62ef
9b74a5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbaf2d3
9b74a5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbaf2d3
9b74a5d
 
 
 
39b62ef
 
 
9b74a5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbaf2d3
9b74a5d
 
 
 
 
 
 
 
 
 
 
 
b2d95df
 
 
 
9b74a5d
 
b2d95df
9b74a5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
212e5f2
 
9b74a5d
 
 
 
 
 
212e5f2
 
9b74a5d
212e5f2
 
 
 
 
9b74a5d
062e4f4
 
 
 
 
 
 
 
 
b2d95df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
062e4f4
 
9b74a5d
 
 
 
 
 
 
 
 
 
 
 
 
b2d95df
 
 
 
9b74a5d
 
 
 
 
 
 
bbaf2d3
212e5f2
 
 
 
 
 
 
 
062e4f4
 
 
 
 
 
b2d95df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b74a5d
b2d95df
212e5f2
9b74a5d
 
 
212e5f2
 
9b74a5d
 
 
 
 
 
 
 
 
 
 
 
212e5f2
9b74a5d
 
b2d95df
 
 
 
 
bbaf2d3
9b74a5d
 
bbaf2d3
9b74a5d
 
 
 
 
bbaf2d3
9b74a5d
 
 
 
 
 
 
bbaf2d3
9b74a5d
 
 
 
 
 
 
 
bbaf2d3
9b74a5d
 
 
 
 
 
 
bbaf2d3
a6b881c
212e5f2
9b74a5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2d95df
9b74a5d
39b62ef
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
import json
import os
from datetime import datetime, timezone


import gradio as gr
import numpy as np
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import HfApi
from transformers import AutoConfig

from src.auto_leaderboard.get_model_metadata import apply_metadata, DO_NOT_SUBMIT_MODELS
from src.assets.text_content import *
from src.auto_leaderboard.load_results import get_eval_results_dicts, make_clickable_model
from src.assets.hardcoded_evals import gpt4_values, gpt35_values, baseline
from src.assets.css_html_js import custom_css, get_window_url_params
from src.utils_display import AutoEvalColumn, EvalQueueColumn, fields, styled_error, styled_warning, styled_message
from src.init import get_all_requested_models, load_all_info_from_hub

pd.set_option('display.precision', 1)

# clone / pull the lmeh eval data
H4_TOKEN = os.environ.get("H4_TOKEN", None)

QUEUE_REPO = "open-llm-leaderboard/requests"
RESULTS_REPO = "open-llm-leaderboard/results"

PRIVATE_QUEUE_REPO = "open-llm-leaderboard/private-requests"
PRIVATE_RESULTS_REPO = "open-llm-leaderboard/private-results"

IS_PUBLIC = bool(os.environ.get("IS_PUBLIC", True))

EVAL_REQUESTS_PATH = "eval-queue"
EVAL_RESULTS_PATH = "eval-results"

EVAL_REQUESTS_PATH_PRIVATE = "eval-queue-private"
EVAL_RESULTS_PATH_PRIVATE = "eval-results-private"

api = HfApi()

def restart_space():
    api.restart_space(
        repo_id="gsaivinay/open_llm_leaderboard", token=H4_TOKEN
    )

eval_queue, requested_models, eval_results = load_all_info_from_hub(QUEUE_REPO, RESULTS_REPO, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH)

if not IS_PUBLIC:
    eval_queue_private, requested_models_private, eval_results_private = load_all_info_from_hub(PRIVATE_QUEUE_REPO, PRIVATE_RESULTS_REPO, EVAL_REQUESTS_PATH_PRIVATE, EVAL_RESULTS_PATH_PRIVATE)
else:
    eval_queue_private, eval_results_private = None, None

COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden]
COLS_LITE = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
TYPES_LITE = [c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]

if not IS_PUBLIC:
    COLS.insert(2, AutoEvalColumn.precision.name)
    TYPES.insert(2, AutoEvalColumn.precision.type)

EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]

BENCHMARK_COLS = [c.name for c in [AutoEvalColumn.arc, AutoEvalColumn.hellaswag, AutoEvalColumn.mmlu, AutoEvalColumn.truthfulqa]]


def has_no_nan_values(df, columns):
    return df[columns].notna().all(axis=1)


def has_nan_values(df, columns):
    return df[columns].isna().any(axis=1)


def get_leaderboard_df():
    if eval_results:
        print("Pulling evaluation results for the leaderboard.")
        eval_results.git_pull()
    if eval_results_private:
        print("Pulling evaluation results for the leaderboard.")
        eval_results_private.git_pull()

    all_data = get_eval_results_dicts()

    # if not IS_PUBLIC:
    all_data.append(gpt4_values)
    all_data.append(gpt35_values)

    all_data.append(baseline)
    apply_metadata(all_data)  # Populate model type based on known hardcoded values in `metadata.py`

    df = pd.DataFrame.from_records(all_data)
    df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
    df = df[COLS].round(decimals=2)

    # filter out if any of the benchmarks have not been produced
    df = df[has_no_nan_values(df, BENCHMARK_COLS)]
    return df


def get_evaluation_queue_df():
    if eval_queue:
        print("Pulling changes for the evaluation queue.")
        eval_queue.git_pull()
    if eval_queue_private:
        print("Pulling changes for the evaluation queue.")
        eval_queue_private.git_pull()

    entries = [
        entry
        for entry in os.listdir(EVAL_REQUESTS_PATH)
        if not entry.startswith(".")
    ]
    all_evals = []

    for entry in entries:
        if ".json" in entry:
            file_path = os.path.join(EVAL_REQUESTS_PATH, entry)
            with open(file_path) as fp:
                data = json.load(fp)

            data["# params"] = "unknown"
            data["model"] = make_clickable_model(data["model"])
            data["revision"] = data.get("revision", "main")

            all_evals.append(data)
        elif ".md" not in entry:
            # this is a folder
            sub_entries = [
                e
                for e in os.listdir(f"{EVAL_REQUESTS_PATH}/{entry}")
                if not e.startswith(".")
            ]
            for sub_entry in sub_entries:
                file_path = os.path.join(EVAL_REQUESTS_PATH, entry, sub_entry)
                with open(file_path) as fp:
                    data = json.load(fp)

                # data["# params"] = get_n_params(data["model"])
                data["model"] = make_clickable_model(data["model"])
                all_evals.append(data)

    pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
    running_list = [e for e in all_evals if e["status"] == "RUNNING"]
    finished_list = [e for e in all_evals if e["status"].startswith("FINISHED")]
    df_pending = pd.DataFrame.from_records(pending_list, columns=EVAL_COLS)
    df_running = pd.DataFrame.from_records(running_list, columns=EVAL_COLS)
    df_finished = pd.DataFrame.from_records(finished_list, columns=EVAL_COLS)
    return df_finished[EVAL_COLS], df_running[EVAL_COLS], df_pending[EVAL_COLS]



original_df = get_leaderboard_df()
leaderboard_df = original_df.copy()
(
    finished_eval_queue_df,
    running_eval_queue_df,
    pending_eval_queue_df,
) = get_evaluation_queue_df()

def is_model_on_hub(model_name, revision) -> bool:
    try:
        AutoConfig.from_pretrained(model_name, revision=revision)
        return True, None
    
    except ValueError as e:
        return False, "needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard."

    except Exception as e:
        print(f"Could not get the model config from the hub.: {e}")
        return False, "was not found on hub!"


def add_new_eval(
    model: str,
    base_model: str,
    revision: str,
    precision: str,
    private: bool,
    weight_type: str,
    model_type: str,
):
    precision = precision.split(" ")[0]
    current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")

    if model_type is None or model_type == "":
        return styled_error("Please select a model type.")

    # check the model actually exists before adding the eval
    if revision == "":
        revision = "main"

    if weight_type in ["Delta", "Adapter"]:
        base_model_on_hub, error = is_model_on_hub(base_model, revision)
        if not base_model_on_hub:
            return styled_error(f'Base model "{base_model}" {error}')
        

    if not weight_type == "Adapter":
        model_on_hub, error = is_model_on_hub(model, revision)
        if not model_on_hub:
            return styled_error(f'Model "{model}" {error}')
    
    print("adding new eval")

    eval_entry = {
        "model": model,
        "base_model": base_model,
        "revision": revision,
        "private": private,
        "precision": precision,
        "weight_type": weight_type,
        "status": "PENDING",
        "submitted_time": current_time,
        "model_type": model_type,
    }

    user_name = ""
    model_path = model
    if "/" in model:
        user_name = model.split("/")[0]
        model_path = model.split("/")[1]

    OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
    os.makedirs(OUT_DIR, exist_ok=True)
    out_path = f"{OUT_DIR}/{model_path}_eval_request_{private}_{precision}_{weight_type}.json"

    # Check if the model has been forbidden:
    if out_path.split("eval-queue/")[1] in DO_NOT_SUBMIT_MODELS:
        return styled_warning("Model authors have requested that their model be not submitted on the leaderboard.")

    # Check for duplicate submission
    if out_path.split("eval-queue/")[1].lower() in requested_models:
        return styled_warning("This model has been already submitted.")    

    with open(out_path, "w") as f:
        f.write(json.dumps(eval_entry))

    api.upload_file(
        path_or_fileobj=out_path,
        path_in_repo=out_path.split("eval-queue/")[1],
        repo_id=QUEUE_REPO,
        token=H4_TOKEN,
        repo_type="dataset",
        commit_message=f"Add {model} to eval queue",
    )

    # remove the local file
    os.remove(out_path)

    return styled_message("Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list.")


def refresh():
    leaderboard_df = get_leaderboard_df()
    (
        finished_eval_queue_df,
        running_eval_queue_df,
        pending_eval_queue_df,
    ) = get_evaluation_queue_df()
    return (
        leaderboard_df,
        finished_eval_queue_df,
        running_eval_queue_df,
        pending_eval_queue_df,
    )


def search_table(df, leaderboard_table, query):
    if AutoEvalColumn.model_type.name in leaderboard_table.columns:
        filtered_df = df[
            (df[AutoEvalColumn.dummy.name].str.contains(query, case=False))
            | (df[AutoEvalColumn.model_type.name].str.contains(query, case=False))
            ]
    else:
        filtered_df = df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]
    return filtered_df[leaderboard_table.columns]


def select_columns(df, columns):
    always_here_cols = [AutoEvalColumn.model_type_symbol.name, AutoEvalColumn.model.name]
    # We use COLS to maintain sorting 
    filtered_df = df[always_here_cols + [c for c in COLS if c in df.columns and c in columns] + [AutoEvalColumn.dummy.name]]
    return filtered_df

#TODO allow this to filter by values of any columns
def filter_items(df, leaderboard_table, query):
    if query == "all":
        return df[leaderboard_table.columns]
    else:
        query = query[0] #take only the emoji character
    if AutoEvalColumn.model_type_symbol.name in leaderboard_table.columns:
        filtered_df = df[(df[AutoEvalColumn.model_type_symbol.name] == query)]
    else:
        return filtered_df[leaderboard_table.columns]
    return filtered_df[leaderboard_table.columns]

def filter_items_size(df, leaderboard_table, query):
    numeric_intervals = {
        "all": None,
        "< 1B": (0, 1),
        "~3B": (1, 5),
        "~7B": (6, 11),
        "~13B": (12, 15),
        "~35B": (16, 55),
        "60B+": (55, 1000)
    }

    if query == "all":
        return df[leaderboard_table.columns]

    numeric_interval = numeric_intervals[query]

    if AutoEvalColumn.params.name in leaderboard_table.columns:
        params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors='coerce')
        filtered_df = df[params_column.between(*numeric_interval)]
    else:
        return filtered_df[leaderboard_table.columns]
    return filtered_df[leaderboard_table.columns]

def change_tab(query_param):
    query_param = query_param.replace("'", '"')
    query_param = json.loads(query_param)

    if (
        isinstance(query_param, dict)
        and "tab" in query_param
        and query_param["tab"] == "evaluation"
    ):
        return gr.Tabs.update(selected=1)
    else:
        return gr.Tabs.update(selected=0)

def update_filter_type(input_type, shown_columns):
    shown_columns.append(AutoEvalColumn.params.name)
    return gr.update(visible=(input_type == 'types')), gr.update(visible=(input_type == 'sizes')), shown_columns


demo = gr.Blocks(css=custom_css)
with demo:
    gr.HTML(TITLE)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("πŸ… LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
            with gr.Row():
                shown_columns = gr.CheckboxGroup(
                    choices = [c for c in COLS if c not in [AutoEvalColumn.dummy.name, AutoEvalColumn.model.name, AutoEvalColumn.model_type_symbol.name]], 
                    value = [c for c in COLS_LITE if c not in [AutoEvalColumn.dummy.name, AutoEvalColumn.model.name, AutoEvalColumn.model_type_symbol.name]],
                    label="Select columns to show", 
                    elem_id="column-select", 
                    interactive=True,
                )
                with gr.Column(min_width=320):
                    search_bar = gr.Textbox(
                        placeholder="πŸ” Search for your model and press ENTER...",
                        show_label=False,
                        elem_id="search-bar",
                    )
                    with gr.Box(elem_id="box-filter"):
                        filter_type = gr.Dropdown(
                                label="⏚ Filter model",
                                choices=["types", "sizes"], value="types",
                                interactive=True,
                                elem_id="filter_type"
                        )
                        filter_columns = gr.Radio(
                            label="⏚ Filter model types",
                            show_label=False,
                            choices = [
                                "all", 
                                ModelType.PT.to_str(),
                                ModelType.FT.to_str(),
                                ModelType.IFT.to_str(),
                                ModelType.RL.to_str(), 
                            ],
                            value="all",
                            elem_id="filter-columns"
                        )
                        filter_columns_size = gr.Radio(
                            label="⏚ Filter model sizes",
                            show_label=False,
                            choices = [
                                "all",
                                "< 1B",
                                "~3B",
                                "~7B",
                                "~13B",
                                "~35B",
                                "60B+"
                            ],
                            value="all",
                            visible=False,
                            interactive=True,
                            elem_id="filter-columns-size"
                        )
            
            leaderboard_table = gr.components.Dataframe(
                value=leaderboard_df[[AutoEvalColumn.model_type_symbol.name, AutoEvalColumn.model.name] + shown_columns.value + [AutoEvalColumn.dummy.name]],
                headers=[AutoEvalColumn.model_type_symbol.name, AutoEvalColumn.model.name] + shown_columns.value + [AutoEvalColumn.dummy.name],
                datatype=TYPES,
                max_rows=None,
                elem_id="leaderboard-table",
                interactive=False,
                visible=True,
            )

            # Dummy leaderboard for handling the case when the user uses backspace key
            hidden_leaderboard_table_for_search = gr.components.Dataframe(
                value=original_df,
                headers=COLS,
                datatype=TYPES,
                max_rows=None,
                visible=False,
            )
            search_bar.submit(
                search_table,
                [hidden_leaderboard_table_for_search, leaderboard_table, search_bar],
                leaderboard_table,
            )
            
            filter_type.change(update_filter_type,inputs=[filter_type, shown_columns],outputs=[filter_columns, filter_columns_size, shown_columns],queue=False).then(select_columns, [hidden_leaderboard_table_for_search, shown_columns], leaderboard_table, queue=False)
            shown_columns.change(select_columns, [hidden_leaderboard_table_for_search, shown_columns], leaderboard_table, queue=False)
            filter_columns.change(filter_items, [hidden_leaderboard_table_for_search, leaderboard_table, filter_columns], leaderboard_table, queue=False)
            filter_columns_size.change(filter_items_size, [hidden_leaderboard_table_for_search, leaderboard_table, filter_columns_size], leaderboard_table, queue=False)
        with gr.TabItem("πŸ“ About", elem_id="llm-benchmark-tab-table", id=2):
            gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")

        with gr.TabItem("πŸš€ Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
            with gr.Column():
                with gr.Row():
                    gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")

                with gr.Column():
                    with gr.Accordion(f"βœ… Finished Evaluations ({len(finished_eval_queue_df)})", open=False):
                        with gr.Row():
                            finished_eval_table = gr.components.Dataframe(
                                value=finished_eval_queue_df,
                                headers=EVAL_COLS,
                                datatype=EVAL_TYPES,
                                max_rows=5,
                            )
                    with gr.Accordion(f"πŸ”„ Running Evaluation Queue ({len(running_eval_queue_df)})", open=False):
                        with gr.Row():
                            running_eval_table = gr.components.Dataframe(
                                value=running_eval_queue_df,
                                headers=EVAL_COLS,
                                datatype=EVAL_TYPES,
                                max_rows=5,
                            )

                    with gr.Accordion(f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})", open=False):
                        with gr.Row():
                            pending_eval_table = gr.components.Dataframe(
                                value=pending_eval_queue_df,
                                headers=EVAL_COLS,
                                datatype=EVAL_TYPES,
                                max_rows=5,
                            )
            with gr.Row():
                gr.Markdown("# βœ‰οΈβœ¨ Submit your model [here!](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)", elem_classes="markdown-text")

        with gr.Row():
            refresh_button = gr.Button("Refresh")
            refresh_button.click(
                refresh,
                inputs=[],
                outputs=[
                    leaderboard_table,
                    finished_eval_table,
                    running_eval_table,
                    pending_eval_table,
                ],
            )

    with gr.Row():
        with gr.Accordion("πŸ“™ Citation", open=False):
            citation_button = gr.Textbox(
                value=CITATION_BUTTON_TEXT,
                label=CITATION_BUTTON_LABEL,
                elem_id="citation-button",
            ).style(show_copy_button=True)

    dummy = gr.Textbox(visible=False)
    demo.load(
        change_tab,
        dummy,
        tabs,
        _js=get_window_url_params,
    )

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=900)
scheduler.start()
demo.queue(concurrency_count=40).launch()