gsaivinay's picture
Merge branch 'main' of https://huggingface.co/spaces/gsaivinay/open_llm_leaderboard
1c7d9c0
raw
history blame
22.1 kB
import json
import os
from datetime import datetime, timezone
import gradio as gr
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import HfApi
from src.assets.css_html_js import custom_css, get_window_url_params
from src.assets.text_content import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
)
from src.display_models.get_model_metadata import DO_NOT_SUBMIT_MODELS, ModelType
from src.display_models.utils import (
AutoEvalColumn,
EvalQueueColumn,
fields,
styled_error,
styled_message,
styled_warning,
)
from src.load_from_hub import get_evaluation_queue_df, get_leaderboard_df, is_model_on_hub, load_all_info_from_hub
from src.rate_limiting import user_submission_permission
pd.set_option("display.precision", 1)
# clone / pull the lmeh eval data
H4_TOKEN = os.environ.get("H4_TOKEN", None)
QUEUE_REPO = "open-llm-leaderboard/requests"
RESULTS_REPO = "open-llm-leaderboard/results"
PRIVATE_QUEUE_REPO = "open-llm-leaderboard/private-requests"
PRIVATE_RESULTS_REPO = "open-llm-leaderboard/private-results"
IS_PUBLIC = bool(os.environ.get("IS_PUBLIC", True))
EVAL_REQUESTS_PATH = "eval-queue"
EVAL_RESULTS_PATH = "eval-results"
EVAL_REQUESTS_PATH_PRIVATE = "eval-queue-private"
EVAL_RESULTS_PATH_PRIVATE = "eval-results-private"
api = HfApi(token=H4_TOKEN)
def restart_space():
api.restart_space(
repo_id="gsaivinay/open_llm_leaderboard", token=H4_TOKEN
)
# Rate limit variables
RATE_LIMIT_PERIOD = 7
RATE_LIMIT_QUOTA = 5
# Column selection
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden]
COLS_LITE = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
TYPES_LITE = [c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
if not IS_PUBLIC:
COLS.insert(2, AutoEvalColumn.precision.name)
TYPES.insert(2, AutoEvalColumn.precision.type)
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
BENCHMARK_COLS = [
c.name
for c in [
AutoEvalColumn.arc,
AutoEvalColumn.hellaswag,
AutoEvalColumn.mmlu,
AutoEvalColumn.truthfulqa,
]
]
## LOAD INFO FROM HUB
eval_queue, requested_models, eval_results, users_to_submission_dates = load_all_info_from_hub(
QUEUE_REPO, RESULTS_REPO, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH
)
if not IS_PUBLIC:
(eval_queue_private, requested_models_private, eval_results_private, _) = load_all_info_from_hub(
PRIVATE_QUEUE_REPO,
PRIVATE_RESULTS_REPO,
EVAL_REQUESTS_PATH_PRIVATE,
EVAL_RESULTS_PATH_PRIVATE,
)
else:
eval_queue_private, eval_results_private = None, None
original_df = get_leaderboard_df(eval_results, eval_results_private, COLS, BENCHMARK_COLS)
models = original_df["model_name_for_query"].tolist() # needed for model backlinks in their to the leaderboard
to_be_dumped = f"models = {repr(models)}\n"
leaderboard_df = original_df.copy()
(
finished_eval_queue_df,
running_eval_queue_df,
pending_eval_queue_df,
) = get_evaluation_queue_df(eval_queue, eval_queue_private, EVAL_REQUESTS_PATH, EVAL_COLS)
print(leaderboard_df["Precision"].unique())
## INTERACTION FUNCTIONS
def add_new_eval(
model: str,
base_model: str,
revision: str,
precision: str,
private: bool,
weight_type: str,
model_type: str,
):
precision = precision.split(" ")[0]
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
num_models_submitted_in_period = user_submission_permission(model, users_to_submission_dates, RATE_LIMIT_PERIOD)
if num_models_submitted_in_period > RATE_LIMIT_QUOTA:
error_msg = f"Organisation or user `{model.split('/')[0]}`"
error_msg += f"already has {num_models_submitted_in_period} model requests submitted to the leaderboard "
error_msg += f"in the last {RATE_LIMIT_PERIOD} days.\n"
error_msg += "Please wait a couple of days before resubmitting, so that everybody can enjoy using the leaderboard πŸ€—"
return styled_error(error_msg)
if model_type is None or model_type == "":
return styled_error("Please select a model type.")
# check the model actually exists before adding the eval
if revision == "":
revision = "main"
if weight_type in ["Delta", "Adapter"]:
base_model_on_hub, error = is_model_on_hub(base_model, revision)
if not base_model_on_hub:
return styled_error(f'Base model "{base_model}" {error}')
if not weight_type == "Adapter":
model_on_hub, error = is_model_on_hub(model, revision)
if not model_on_hub:
return styled_error(f'Model "{model}" {error}')
print("adding new eval")
eval_entry = {
"model": model,
"base_model": base_model,
"revision": revision,
"private": private,
"precision": precision,
"weight_type": weight_type,
"status": "PENDING",
"submitted_time": current_time,
"model_type": model_type,
}
user_name = ""
model_path = model
if "/" in model:
user_name = model.split("/")[0]
model_path = model.split("/")[1]
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
os.makedirs(OUT_DIR, exist_ok=True)
out_path = f"{OUT_DIR}/{model_path}_eval_request_{private}_{precision}_{weight_type}.json"
# Check if the model has been forbidden:
if out_path.split("eval-queue/")[1] in DO_NOT_SUBMIT_MODELS:
return styled_warning("Model authors have requested that their model be not submitted on the leaderboard.")
# Check for duplicate submission
if f"{model}_{revision}_{precision}" in requested_models:
return styled_warning("This model has been already submitted.")
with open(out_path, "w") as f:
f.write(json.dumps(eval_entry))
api.upload_file(
path_or_fileobj=out_path,
path_in_repo=out_path.split("eval-queue/")[1],
repo_id=QUEUE_REPO,
repo_type="dataset",
commit_message=f"Add {model} to eval queue",
)
# remove the local file
os.remove(out_path)
return styled_message(
"Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list."
)
# Basics
def change_tab(query_param: str):
query_param = query_param.replace("'", '"')
query_param = json.loads(query_param)
if isinstance(query_param, dict) and "tab" in query_param and query_param["tab"] == "evaluation":
return gr.Tabs.update(selected=1)
else:
return gr.Tabs.update(selected=0)
# Searching and filtering
def update_table(hidden_df: pd.DataFrame, current_columns_df: pd.DataFrame, columns: list, type_query: list, precision_query: str, size_query: list, show_deleted: bool, query: str):
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
def update_table(hidden_df: pd.DataFrame, current_columns_df: pd.DataFrame, columns: list, type_query: list, precision_query: str, size_query: list, show_deleted: bool, query: str):
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
if query != "":
filtered_df = search_table(filtered_df, query)
df = select_columns(filtered_df, columns)
return df
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
always_here_cols = [
AutoEvalColumn.model_type_symbol.name,
AutoEvalColumn.model.name,
]
# We use COLS to maintain sorting
filtered_df = df[
always_here_cols + [c for c in COLS if c in df.columns and c in columns] + [AutoEvalColumn.dummy.name]
]
return filtered_df
NUMERIC_INTERVALS = {
"Unknown": pd.Interval(-1, 0, closed="right"),
"< 1.5B": pd.Interval(0, 1.5, closed="right"),
"~3B": pd.Interval(1.5, 5, closed="right"),
"~7B": pd.Interval(6, 11, closed="right"),
"~13B": pd.Interval(12, 15, closed="right"),
"~35B": pd.Interval(16, 55, closed="right"),
"60B+": pd.Interval(55, 10000, closed="right"),
}
def filter_models(
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool
) -> pd.DataFrame:
# Show all models
if show_deleted:
filtered_df = df
else: # Show only still on the hub models
filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
type_emoji = [t[0] for t in type_query]
filtered_df = filtered_df[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
filtered_df = filtered_df[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
filtered_df = filtered_df.loc[mask]
return filtered_df
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("πŸ… LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
with gr.Row():
with gr.Column():
with gr.Row():
search_bar = gr.Textbox(
placeholder=" πŸ” Search for your model and press ENTER...",
show_label=False,
elem_id="search-bar",
)
with gr.Row():
search_bar = gr.Textbox(
placeholder=" πŸ” Search for your model and press ENTER...",
show_label=False,
elem_id="search-bar",
)
with gr.Row():
shown_columns = gr.CheckboxGroup(
choices=[
c
for c in COLS
if c
not in [
AutoEvalColumn.dummy.name,
AutoEvalColumn.model.name,
AutoEvalColumn.model_type_symbol.name,
AutoEvalColumn.still_on_hub.name,
]
],
value=[
c
for c in COLS_LITE
if c
not in [
AutoEvalColumn.dummy.name,
AutoEvalColumn.model.name,
AutoEvalColumn.model_type_symbol.name,
AutoEvalColumn.still_on_hub.name,
]
],
label="Select columns to show",
elem_id="column-select",
interactive=True,
)
with gr.Row():
deleted_models_visibility = gr.Checkbox(
value=True, label="Show gated/private/deleted models", interactive=True
)
with gr.Column(min_width=320):
with gr.Box(elem_id="box-filter"):
filter_columns_type = gr.CheckboxGroup(
label="Model types",
choices=[
ModelType.PT.to_str(),
ModelType.FT.to_str(),
ModelType.IFT.to_str(),
ModelType.RL.to_str(),
ModelType.Unknown.to_str(),
],
value=[
ModelType.PT.to_str(),
ModelType.FT.to_str(),
ModelType.IFT.to_str(),
ModelType.RL.to_str(),
ModelType.Unknown.to_str(),
],
interactive=True,
elem_id="filter-columns-type",
)
filter_columns_precision = gr.CheckboxGroup(
label="Precision",
choices=["torch.float16", "torch.bfloat16", "torch.float32", "8bit", "4bit", "GPTQ"],
value=["torch.float16", "torch.bfloat16", "torch.float32", "8bit", "4bit", "GPTQ"],
interactive=True,
elem_id="filter-columns-precision",
)
filter_columns_precision = gr.CheckboxGroup(
label="Precision",
choices=["torch.float16", "torch.bfloat16", "torch.float32", "8bit", "4bit", "GPTQ"],
value=["torch.float16", "torch.bfloat16", "torch.float32", "8bit", "4bit", "GPTQ"],
interactive=True,
elem_id="filter-columns-precision",
)
filter_columns_size = gr.CheckboxGroup(
label="Model sizes",
choices=list(NUMERIC_INTERVALS.keys()),
value=list(NUMERIC_INTERVALS.keys()),
interactive=True,
elem_id="filter-columns-size",
)
leaderboard_table = gr.components.Dataframe(
value=leaderboard_df[
[AutoEvalColumn.model_type_symbol.name, AutoEvalColumn.model.name]
+ shown_columns.value
+ [AutoEvalColumn.dummy.name]
],
headers=[
AutoEvalColumn.model_type_symbol.name,
AutoEvalColumn.model.name,
]
+ shown_columns.value
+ [AutoEvalColumn.dummy.name],
datatype=TYPES,
max_rows=None,
elem_id="leaderboard-table",
interactive=False,
visible=True,
)
# Dummy leaderboard for handling the case when the user uses backspace key
hidden_leaderboard_table_for_search = gr.components.Dataframe(
value=original_df,
headers=COLS,
datatype=TYPES,
max_rows=None,
visible=False,
)
search_bar.submit(
update_table,
[
hidden_leaderboard_table_for_search,
leaderboard_table,
shown_columns,
filter_columns_type,
filter_columns_precision,
filter_columns_precision,
filter_columns_size,
deleted_models_visibility,
search_bar,
],
leaderboard_table,
)
shown_columns.change(
update_table,
[
hidden_leaderboard_table_for_search,
leaderboard_table,
shown_columns,
filter_columns_type,
filter_columns_precision,
filter_columns_precision,
filter_columns_size,
deleted_models_visibility,
search_bar,
],
leaderboard_table,
queue=True,
)
filter_columns_type.change(
update_table,
[
hidden_leaderboard_table_for_search,
leaderboard_table,
shown_columns,
filter_columns_type,
filter_columns_precision,
filter_columns_size,
deleted_models_visibility,
search_bar,
],
leaderboard_table,
queue=True,
)
filter_columns_precision.change(
update_table,
[
hidden_leaderboard_table_for_search,
leaderboard_table,
shown_columns,
filter_columns_type,
filter_columns_precision,
filter_columns_precision,
filter_columns_size,
deleted_models_visibility,
search_bar,
],
leaderboard_table,
queue=True,
)
filter_columns_precision.change(
update_table,
[
hidden_leaderboard_table_for_search,
leaderboard_table,
shown_columns,
filter_columns_type,
filter_columns_precision,
filter_columns_size,
deleted_models_visibility,
search_bar,
],
leaderboard_table,
queue=True,
)
filter_columns_size.change(
update_table,
[
hidden_leaderboard_table_for_search,
leaderboard_table,
shown_columns,
filter_columns_type,
filter_columns_precision,
filter_columns_precision,
filter_columns_size,
deleted_models_visibility,
search_bar,
],
leaderboard_table,
queue=True,
)
deleted_models_visibility.change(
update_table,
[
hidden_leaderboard_table_for_search,
leaderboard_table,
shown_columns,
filter_columns_type,
filter_columns_precision,
filter_columns_precision,
filter_columns_size,
deleted_models_visibility,
search_bar,
],
leaderboard_table,
queue=True,
)
with gr.TabItem("πŸ“ About", elem_id="llm-benchmark-tab-table", id=2):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
with gr.TabItem("πŸš€ Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
with gr.Column():
with gr.Row():
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
with gr.Column():
with gr.Accordion(
f"βœ… Finished Evaluations ({len(finished_eval_queue_df)})",
open=False,
):
with gr.Row():
finished_eval_table = gr.components.Dataframe(
value=finished_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
max_rows=5,
)
with gr.Accordion(
f"πŸ”„ Running Evaluation Queue ({len(running_eval_queue_df)})",
open=False,
):
with gr.Row():
running_eval_table = gr.components.Dataframe(
value=running_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
max_rows=5,
)
with gr.Accordion(
f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
open=False,
):
with gr.Row():
pending_eval_table = gr.components.Dataframe(
value=pending_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
max_rows=5,
)
with gr.Row():
gr.Markdown("# βœ‰οΈβœ¨ Submit your model [here!](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)", elem_classes="markdown-text")
with gr.Row():
with gr.Accordion("πŸ“™ Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
elem_id="citation-button",
).style(show_copy_button=True)
dummy = gr.Textbox(visible=False)
demo.load(
change_tab,
dummy,
tabs,
_js=get_window_url_params,
)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(concurrency_count=40).launch()