Sai Vinay G commited on
Commit
0663362
1 Parent(s): 56b7bee
app.py CHANGED
@@ -6,6 +6,7 @@ import gradio as gr
6
  import pandas as pd
7
  from apscheduler.schedulers.background import BackgroundScheduler
8
  from huggingface_hub import HfApi
 
9
  from src.assets.css_html_js import custom_css, get_window_url_params
10
  from src.assets.text_content import (
11
  CITATION_BUTTON_LABEL,
@@ -232,9 +233,17 @@ def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
232
  ]
233
  return filtered_df
234
 
 
 
 
 
 
 
 
 
235
 
236
  def filter_models(
237
- df: pd.DataFrame, current_columns_df: pd.DataFrame, type_query: str, size_query: str, show_deleted: bool
238
  ) -> pd.DataFrame:
239
  current_columns = current_columns_df.columns
240
 
@@ -242,26 +251,14 @@ def filter_models(
242
  if show_deleted:
243
  filtered_df = df[current_columns]
244
  else: # Show only still on the hub models
245
- filtered_df = df[df[AutoEvalColumn.still_on_hub.name] is True][current_columns]
246
-
247
- if type_query != "all":
248
- type_emoji = type_query[0]
249
- filtered_df = filtered_df[df[AutoEvalColumn.model_type_symbol.name] == type_emoji]
250
-
251
- if size_query != "all":
252
- numeric_intervals = {
253
- "all": (0, 10000),
254
- "< 1B": (0, 1),
255
- "~3B": (1, 5),
256
- "~7B": (6, 11),
257
- "~13B": (12, 15),
258
- "~35B": (16, 55),
259
- "60B+": (55, 10000),
260
- }
261
- numeric_interval = numeric_intervals[size_query]
262
- params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
263
-
264
- filtered_df = filtered_df[params_column.between(*numeric_interval)]
265
 
266
  return filtered_df
267
 
@@ -314,31 +311,27 @@ with demo:
314
  elem_id="search-bar",
315
  )
316
  with gr.Box(elem_id="box-filter"):
317
- filter_columns_type = gr.Radio(
318
- label=" Filter model types",
319
  choices=[
320
- "all",
321
  ModelType.PT.to_str(),
322
  ModelType.FT.to_str(),
323
  ModelType.IFT.to_str(),
324
  ModelType.RL.to_str(),
325
  ],
326
- value="all",
 
 
 
 
 
327
  interactive=True,
328
  elem_id="filter-columns-type",
329
  )
330
- filter_columns_size = gr.Radio(
331
- label=" Filter model sizes",
332
- choices=[
333
- "all",
334
- "< 1B",
335
- "~3B",
336
- "~7B",
337
- "~13B",
338
- "~35B",
339
- "60B+",
340
- ],
341
- value="all",
342
  interactive=True,
343
  elem_id="filter-columns-size",
344
  )
@@ -497,6 +490,6 @@ with demo:
497
  )
498
 
499
  scheduler = BackgroundScheduler()
500
- scheduler.add_job(restart_space, "interval", seconds=1800)
501
  scheduler.start()
502
  demo.queue(concurrency_count=40).launch()
 
6
  import pandas as pd
7
  from apscheduler.schedulers.background import BackgroundScheduler
8
  from huggingface_hub import HfApi
9
+
10
  from src.assets.css_html_js import custom_css, get_window_url_params
11
  from src.assets.text_content import (
12
  CITATION_BUTTON_LABEL,
 
233
  ]
234
  return filtered_df
235
 
236
+ NUMERIC_INTERVALS = {
237
+ "< 1.5B": (0, 1.5),
238
+ "~3B": (1.5, 5),
239
+ "~7B": (6, 11),
240
+ "~13B": (12, 15),
241
+ "~35B": (16, 55),
242
+ "60B+": (55, 10000),
243
+ }
244
 
245
  def filter_models(
246
+ df: pd.DataFrame, current_columns_df: pd.DataFrame, type_query: list, size_query: list, show_deleted: bool
247
  ) -> pd.DataFrame:
248
  current_columns = current_columns_df.columns
249
 
 
251
  if show_deleted:
252
  filtered_df = df[current_columns]
253
  else: # Show only still on the hub models
254
+ filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True][current_columns]
255
+
256
+ type_emoji = [t[0] for t in type_query]
257
+ filtered_df = filtered_df[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
258
+
259
+ numeric_interval = [NUMERIC_INTERVALS[s] for s in size_query]
260
+ params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
261
+ filtered_df = filtered_df[params_column.between(numeric_interval[0][0], numeric_interval[-1][-1])]
 
 
 
 
 
 
 
 
 
 
 
 
262
 
263
  return filtered_df
264
 
 
311
  elem_id="search-bar",
312
  )
313
  with gr.Box(elem_id="box-filter"):
314
+ filter_columns_type = gr.CheckboxGroup(
315
+ label="Model types",
316
  choices=[
 
317
  ModelType.PT.to_str(),
318
  ModelType.FT.to_str(),
319
  ModelType.IFT.to_str(),
320
  ModelType.RL.to_str(),
321
  ],
322
+ value=[
323
+ ModelType.PT.to_str(),
324
+ ModelType.FT.to_str(),
325
+ ModelType.IFT.to_str(),
326
+ ModelType.RL.to_str(),
327
+ ],
328
  interactive=True,
329
  elem_id="filter-columns-type",
330
  )
331
+ filter_columns_size = gr.CheckboxGroup(
332
+ label="Model sizes",
333
+ choices=list(NUMERIC_INTERVALS.keys()),
334
+ value=list(NUMERIC_INTERVALS.keys()),
 
 
 
 
 
 
 
 
335
  interactive=True,
336
  elem_id="filter-columns-size",
337
  )
 
490
  )
491
 
492
  scheduler = BackgroundScheduler()
493
+ scheduler.add_job(restart_space, "interval", seconds=3600)
494
  scheduler.start()
495
  demo.queue(concurrency_count=40).launch()
src/display_models/get_model_metadata.py CHANGED
@@ -26,6 +26,12 @@ def get_model_infos_from_hub(leaderboard_data: List[dict]):
26
  model_data[AutoEvalColumn.likes.name] = None
27
  model_data[AutoEvalColumn.params.name] = get_model_size(model_name, None)
28
  continue
 
 
 
 
 
 
29
 
30
  model_data[AutoEvalColumn.license.name] = get_model_license(model_info)
31
  model_data[AutoEvalColumn.likes.name] = get_model_likes(model_info)
 
26
  model_data[AutoEvalColumn.likes.name] = None
27
  model_data[AutoEvalColumn.params.name] = get_model_size(model_name, None)
28
  continue
29
+ except Exception as e:
30
+ print("Repo fetch error", model_name)
31
+ model_data[AutoEvalColumn.license.name] = None
32
+ model_data[AutoEvalColumn.likes.name] = None
33
+ model_data[AutoEvalColumn.params.name] = get_model_size(model_name, None)
34
+ continue
35
 
36
  model_data[AutoEvalColumn.license.name] = get_model_license(model_info)
37
  model_data[AutoEvalColumn.likes.name] = get_model_likes(model_info)
src/display_models/model_metadata_flags.py CHANGED
@@ -4,6 +4,7 @@ FLAGGED_MODELS = {
4
  "Voicelab/trurl-2-13b": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/202",
5
  "deepnight-research/llama-2-70B-inst": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/207",
6
  "Aspik101/trurl-2-13b-pl-instruct_unload": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/213",
 
7
  }
8
 
9
  # Models which have been requested by orgs to not be submitted on the leaderboard
 
4
  "Voicelab/trurl-2-13b": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/202",
5
  "deepnight-research/llama-2-70B-inst": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/207",
6
  "Aspik101/trurl-2-13b-pl-instruct_unload": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/213",
7
+ "Fredithefish/ReasonixPajama-3B-HF": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/236",
8
  }
9
 
10
  # Models which have been requested by orgs to not be submitted on the leaderboard
src/display_models/model_metadata_type.py CHANGED
@@ -21,6 +21,8 @@ class ModelType(Enum):
21
 
22
 
23
  MODEL_TYPE_METADATA: Dict[str, ModelType] = {
 
 
24
  "notstoic/PygmalionCoT-7b": ModelType.IFT,
25
  "aisquared/dlite-v1-355m": ModelType.IFT,
26
  "aisquared/dlite-v1-1_5b": ModelType.IFT,
 
21
 
22
 
23
  MODEL_TYPE_METADATA: Dict[str, ModelType] = {
24
+ "Qwen/Qwen-7B": ModelType.PT,
25
+ "Qwen/Qwen-7B-Chat": ModelType.RL,
26
  "notstoic/PygmalionCoT-7b": ModelType.IFT,
27
  "aisquared/dlite-v1-355m": ModelType.IFT,
28
  "aisquared/dlite-v1-1_5b": ModelType.IFT,