Spaces:
Runtime error
Runtime error
updates
Browse files- app.py +15 -21
- model_info_cache.pkl +3 -0
- src/display_models/get_model_metadata.py +27 -10
- src/display_models/model_metadata_type.py +2 -0
- src/display_models/read_results.py +1 -1
app.py
CHANGED
@@ -218,22 +218,14 @@ def change_tab(query_param: str):
|
|
218 |
# Searching and filtering
|
219 |
def update_table(hidden_df: pd.DataFrame, current_columns_df: pd.DataFrame, columns: list, type_query: list, size_query: list, show_deleted: bool, query: str):
|
220 |
filtered_df = filter_models(hidden_df, type_query, size_query, show_deleted)
|
221 |
-
|
222 |
-
|
|
|
223 |
|
224 |
return df
|
225 |
|
226 |
-
def search_table(df: pd.DataFrame,
|
227 |
-
|
228 |
-
if AutoEvalColumn.model_type.name in current_columns:
|
229 |
-
filtered_df = df[
|
230 |
-
(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))
|
231 |
-
| (df[AutoEvalColumn.model_type.name].str.contains(query, case=False))
|
232 |
-
]
|
233 |
-
else:
|
234 |
-
filtered_df = df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]
|
235 |
-
|
236 |
-
return filtered_df
|
237 |
|
238 |
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
239 |
always_here_cols = [
|
@@ -247,12 +239,13 @@ def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
|
247 |
return filtered_df
|
248 |
|
249 |
NUMERIC_INTERVALS = {
|
250 |
-
"
|
251 |
-
"
|
252 |
-
"~
|
253 |
-
"~
|
254 |
-
"~
|
255 |
-
"
|
|
|
256 |
}
|
257 |
|
258 |
def filter_models(
|
@@ -267,9 +260,10 @@ def filter_models(
|
|
267 |
type_emoji = [t[0] for t in type_query]
|
268 |
filtered_df = filtered_df[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
|
269 |
|
270 |
-
numeric_interval = [NUMERIC_INTERVALS[s] for s in size_query]
|
271 |
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
|
272 |
-
|
|
|
273 |
|
274 |
return filtered_df
|
275 |
|
|
|
218 |
# Searching and filtering
|
219 |
def update_table(hidden_df: pd.DataFrame, current_columns_df: pd.DataFrame, columns: list, type_query: list, size_query: list, show_deleted: bool, query: str):
|
220 |
filtered_df = filter_models(hidden_df, type_query, size_query, show_deleted)
|
221 |
+
if query != "":
|
222 |
+
filtered_df = search_table(filtered_df, query)
|
223 |
+
df = select_columns(filtered_df, columns)
|
224 |
|
225 |
return df
|
226 |
|
227 |
+
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
228 |
+
return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
229 |
|
230 |
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
231 |
always_here_cols = [
|
|
|
239 |
return filtered_df
|
240 |
|
241 |
NUMERIC_INTERVALS = {
|
242 |
+
"Unknown": pd.Interval(-1, 0, closed="right"),
|
243 |
+
"< 1.5B": pd.Interval(0, 1.5, closed="right"),
|
244 |
+
"~3B": pd.Interval(1.5, 5, closed="right"),
|
245 |
+
"~7B": pd.Interval(6, 11, closed="right"),
|
246 |
+
"~13B": pd.Interval(12, 15, closed="right"),
|
247 |
+
"~35B": pd.Interval(16, 55, closed="right"),
|
248 |
+
"60B+": pd.Interval(55, 10000, closed="right"),
|
249 |
}
|
250 |
|
251 |
def filter_models(
|
|
|
260 |
type_emoji = [t[0] for t in type_query]
|
261 |
filtered_df = filtered_df[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
|
262 |
|
263 |
+
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
|
264 |
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
|
265 |
+
mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
|
266 |
+
filtered_df = filtered_df.loc[mask]
|
267 |
|
268 |
return filtered_df
|
269 |
|
model_info_cache.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c307938f15bda18b6c38af3d02cc0407d9d8d5345bc31f475af2cbbb33a4f8b5
|
3 |
+
size 2895750
|
src/display_models/get_model_metadata.py
CHANGED
@@ -2,6 +2,7 @@ import glob
|
|
2 |
import json
|
3 |
import os
|
4 |
import re
|
|
|
5 |
from typing import List
|
6 |
|
7 |
import huggingface_hub
|
@@ -16,27 +17,43 @@ api = HfApi(token=os.environ.get("H4_TOKEN", None))
|
|
16 |
|
17 |
|
18 |
def get_model_infos_from_hub(leaderboard_data: List[dict]):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
for model_data in tqdm(leaderboard_data):
|
20 |
model_name = model_data["model_name_for_query"]
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
model_data[AutoEvalColumn.license.name] = get_model_license(model_info)
|
31 |
model_data[AutoEvalColumn.likes.name] = get_model_likes(model_info)
|
32 |
model_data[AutoEvalColumn.params.name] = get_model_size(model_name, model_info)
|
|
|
|
|
|
|
|
|
33 |
|
34 |
|
35 |
def get_model_license(model_info):
|
36 |
try:
|
37 |
return model_info.cardData["license"]
|
38 |
except Exception:
|
39 |
-
return
|
40 |
|
41 |
|
42 |
def get_model_likes(model_info):
|
@@ -56,7 +73,7 @@ def get_model_size(model_name, model_info):
|
|
56 |
size = size_match.group(0)
|
57 |
return round(float(size[:-1]) if size[-1] == "b" else float(size[:-1]) / 1e3, 3)
|
58 |
except AttributeError:
|
59 |
-
return
|
60 |
|
61 |
|
62 |
def get_model_type(leaderboard_data: List[dict]):
|
|
|
2 |
import json
|
3 |
import os
|
4 |
import re
|
5 |
+
import pickle
|
6 |
from typing import List
|
7 |
|
8 |
import huggingface_hub
|
|
|
17 |
|
18 |
|
19 |
def get_model_infos_from_hub(leaderboard_data: List[dict]):
|
20 |
+
# load cache from disk
|
21 |
+
try:
|
22 |
+
with open("model_info_cache.pkl", "rb") as f:
|
23 |
+
model_info_cache = pickle.load(f)
|
24 |
+
except EOFError:
|
25 |
+
model_info_cache = {}
|
26 |
+
|
27 |
for model_data in tqdm(leaderboard_data):
|
28 |
model_name = model_data["model_name_for_query"]
|
29 |
+
|
30 |
+
if model_name in model_info_cache:
|
31 |
+
model_info = model_info_cache[model_name]
|
32 |
+
else:
|
33 |
+
try:
|
34 |
+
model_info = api.model_info(model_name)
|
35 |
+
model_info_cache[model_name] = model_info
|
36 |
+
except huggingface_hub.utils._errors.RepositoryNotFoundError:
|
37 |
+
print("Repo not found!", model_name)
|
38 |
+
model_data[AutoEvalColumn.license.name] = None
|
39 |
+
model_data[AutoEvalColumn.likes.name] = None
|
40 |
+
model_data[AutoEvalColumn.params.name] = get_model_size(model_name, None)
|
41 |
+
continue
|
42 |
|
43 |
model_data[AutoEvalColumn.license.name] = get_model_license(model_info)
|
44 |
model_data[AutoEvalColumn.likes.name] = get_model_likes(model_info)
|
45 |
model_data[AutoEvalColumn.params.name] = get_model_size(model_name, model_info)
|
46 |
+
|
47 |
+
# save cache to disk in pickle format
|
48 |
+
with open("model_info_cache.pkl", "wb") as f:
|
49 |
+
pickle.dump(model_info_cache, f)
|
50 |
|
51 |
|
52 |
def get_model_license(model_info):
|
53 |
try:
|
54 |
return model_info.cardData["license"]
|
55 |
except Exception:
|
56 |
+
return "?"
|
57 |
|
58 |
|
59 |
def get_model_likes(model_info):
|
|
|
73 |
size = size_match.group(0)
|
74 |
return round(float(size[:-1]) if size[-1] == "b" else float(size[:-1]) / 1e3, 3)
|
75 |
except AttributeError:
|
76 |
+
return 0
|
77 |
|
78 |
|
79 |
def get_model_type(leaderboard_data: List[dict]):
|
src/display_models/model_metadata_type.py
CHANGED
@@ -22,6 +22,8 @@ class ModelType(Enum):
|
|
22 |
|
23 |
MODEL_TYPE_METADATA: Dict[str, ModelType] = {
|
24 |
"tiiuae/falcon-180B": ModelType.PT,
|
|
|
|
|
25 |
"Qwen/Qwen-7B": ModelType.PT,
|
26 |
"Qwen/Qwen-7B-Chat": ModelType.RL,
|
27 |
"notstoic/PygmalionCoT-7b": ModelType.IFT,
|
|
|
22 |
|
23 |
MODEL_TYPE_METADATA: Dict[str, ModelType] = {
|
24 |
"tiiuae/falcon-180B": ModelType.PT,
|
25 |
+
"tiiuae/falcon-180B-chat": ModelType.RL,
|
26 |
+
"microsoft/phi-1_5": ModelType.PT,
|
27 |
"Qwen/Qwen-7B": ModelType.PT,
|
28 |
"Qwen/Qwen-7B-Chat": ModelType.RL,
|
29 |
"notstoic/PygmalionCoT-7b": ModelType.IFT,
|
src/display_models/read_results.py
CHANGED
@@ -27,7 +27,7 @@ class EvalResult:
|
|
27 |
results: dict
|
28 |
precision: str = ""
|
29 |
model_type: str = ""
|
30 |
-
weight_type: str = ""
|
31 |
date: str = ""
|
32 |
|
33 |
def to_dict(self):
|
|
|
27 |
results: dict
|
28 |
precision: str = ""
|
29 |
model_type: str = ""
|
30 |
+
weight_type: str = "Original"
|
31 |
date: str = ""
|
32 |
|
33 |
def to_dict(self):
|