File size: 12,169 Bytes
cf3d1b1
 
 
fbd70bc
cf3d1b1
 
 
 
 
 
 
 
 
 
 
 
 
fbd70bc
cf3d1b1
fbd70bc
 
 
 
 
 
cf3d1b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fbd70bc
cf3d1b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fbd70bc
cf3d1b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
import json
import os

import gradio as gr
import spaces
from contents import (
    citation,
    description,
    examples,
    how_it_works,
    how_to_use,
    subtitle,
    title,
)
from gradio_highlightedtextbox import HighlightedTextbox
from style import custom_css
from utils import get_tuples_from_output

from inseq import list_feature_attribution_methods, list_step_functions
from inseq.commands.attribute_context.attribute_context import (
    AttributeContextArgs,
    attribute_context,
)


@spaces.GPU()
def pecore(
    input_current_text: str,
    input_context_text: str,
    output_current_text: str,
    output_context_text: str,
    model_name_or_path: str,
    attribution_method: str,
    attributed_fn: str | None,
    context_sensitivity_metric: str,
    context_sensitivity_std_threshold: float,
    context_sensitivity_topk: int,
    attribution_std_threshold: float,
    attribution_topk: int,
    input_template: str,
    input_current_text_template: str,
    output_template: str,
    special_tokens_to_keep: str | list[str] | None,
    model_kwargs: str,
    tokenizer_kwargs: str,
    generation_kwargs: str,
    attribution_kwargs: str,
):
    formatted_input_current_text = input_current_text_template.format(
        current=input_current_text
    )
    pecore_args = AttributeContextArgs(
        show_intermediate_outputs=False,
        save_path=os.path.join(os.path.dirname(__file__), "outputs/output.json"),
        add_output_info=True,
        viz_path=os.path.join(os.path.dirname(__file__), "outputs/output.html"),
        show_viz=False,
        model_name_or_path=model_name_or_path,
        attribution_method=attribution_method,
        attributed_fn=attributed_fn,
        attribution_selectors=None,
        attribution_aggregators=None,
        normalize_attributions=True,
        model_kwargs=json.loads(model_kwargs),
        tokenizer_kwargs=json.loads(tokenizer_kwargs),
        generation_kwargs=json.loads(generation_kwargs),
        attribution_kwargs=json.loads(attribution_kwargs),
        context_sensitivity_metric=context_sensitivity_metric,
        align_output_context_auto=False,
        prompt_user_for_contextless_output_next_tokens=False,
        special_tokens_to_keep=special_tokens_to_keep,
        context_sensitivity_std_threshold=context_sensitivity_std_threshold,
        context_sensitivity_topk=context_sensitivity_topk
        if context_sensitivity_topk > 0
        else None,
        attribution_std_threshold=attribution_std_threshold,
        attribution_topk=attribution_topk if attribution_topk > 0 else None,
        input_current_text=formatted_input_current_text,
        input_context_text=input_context_text if input_context_text else None,
        input_template=input_template,
        output_current_text=output_current_text if output_current_text else None,
        output_context_text=output_context_text if output_context_text else None,
        output_template=output_template,
    )
    out = attribute_context(pecore_args)
    return get_tuples_from_output(out), gr.Button(visible=True), gr.Button(visible=True)


with gr.Blocks(css=custom_css) as demo:
    gr.Markdown(title)
    gr.Markdown(subtitle)
    gr.Markdown(description)
    with gr.Tab("πŸ‘ Attributing Context"):
        with gr.Row():
            with gr.Column():
                input_current_text = gr.Textbox(
                    label="Input query", placeholder="Your input query..."
                )
                input_context_text = gr.Textbox(
                    label="Input context", lines=4, placeholder="Your input context..."
                )
                attribute_input_button = gr.Button("Submit", variant="primary")
            with gr.Column():
                pecore_output_highlights = HighlightedTextbox(
                    value=[
                        ("This output will contain ", None),
                        ("context sensitive", "Context sensitive"),
                        (" generated tokens and ", None),
                        ("influential context", "Influential context"),
                        (" tokens.", None),
                    ],
                    color_map={
                        "Context sensitive": "green",
                        "Influential context": "blue",
                    },
                    show_legend=True,
                    label="PECoRe Output",
                    combine_adjacent=True,
                    interactive=False,
                )
                with gr.Row(equal_height=True):
                    download_output_file_button = gr.Button(
                        "⇓ Download output",
                        visible=False,
                        link=os.path.join(
                            os.path.dirname(__file__), "/file=outputs/output.json"
                        ),
                    )
                    download_output_html_button = gr.Button(
                        "πŸ” Download HTML",
                        visible=False,
                        link=os.path.join(
                            os.path.dirname(__file__), "/file=outputs/output.html"
                        ),
                    )

        attribute_input_examples = gr.Examples(
            examples,
            inputs=[input_current_text, input_context_text],
            outputs=pecore_output_highlights,
        )
    with gr.Tab("βš™οΈ Parameters"):
        gr.Markdown("## βš™οΈ PECoRe Parameters")
        with gr.Row(equal_height=True):
            model_name_or_path = gr.Textbox(
                value="gsarti/cora_mgen",
                label="Model",
                info="Hugging Face Hub identifier of the model to analyze with PECoRe.",
                interactive=True,
            )
            context_sensitivity_metric = gr.Dropdown(
                value="kl_divergence",
                label="Context sensitivity metric",
                info="Metric to use to measure context sensitivity of generated tokens.",
                choices=list_step_functions(),
                interactive=True,
            )
            attribution_method = gr.Dropdown(
                value="saliency",
                label="Attribution method",
                info="Attribution method identifier to identify relevant context tokens.",
                choices=list_feature_attribution_methods(),
                interactive=True,
            )
            attributed_fn = gr.Dropdown(
                value="contrast_prob_diff",
                label="Attributed function",
                info="Function of model logits to use as target for the attribution method.",
                choices=list_step_functions(),
                interactive=True,
            )
        gr.Markdown("#### Results Selection Parameters")
        with gr.Row(equal_height=True):
            context_sensitivity_std_threshold = gr.Number(
                value=1.0,
                label="Context sensitivity threshold",
                info="Select N to keep context sensitive tokens with scores above N * std. 0 = above mean.",
                precision=1,
                minimum=0.0,
                maximum=5.0,
                step=0.5,
                interactive=True,
            )
            context_sensitivity_topk = gr.Number(
                value=0,
                label="Context sensitivity top-k",
                info="Select N to keep top N context sensitive tokens. 0 = keep all.",
                interactive=True,
                precision=0,
                minimum=0,
                maximum=10,
            )
            attribution_std_threshold = gr.Number(
                value=1.0,
                label="Attribution threshold",
                info="Select N to keep attributed tokens with scores above N * std. 0 = above mean.",
                precision=1,
                minimum=0.0,
                maximum=5.0,
                step=0.5,
                interactive=True,
            )
            attribution_topk = gr.Number(
                value=0,
                label="Attribution top-k",
                info="Select N to keep top N attributed tokens in the context. 0 = keep all.",
                interactive=True,
                precision=0,
                minimum=0,
                maximum=50,
            )

        gr.Markdown("#### Text Format Parameters")
        with gr.Row(equal_height=True):
            input_template = gr.Textbox(
                value="{current} <P>:{context}",
                label="Input template",
                info="Template to format the input for the model. Use {current} and {context} placeholders.",
                interactive=True,
            )
            output_template = gr.Textbox(
                value="{current}",
                label="Output template",
                info="Template to format the output from the model. Use {current} and {context} placeholders.",
                interactive=True,
            )
            input_current_text_template = gr.Textbox(
                value="<Q>:{current}",
                label="Input current text template",
                info="Template to format the input query for the model. Use {current} placeholder.",
                interactive=True,
            )
            special_tokens_to_keep = gr.Dropdown(
                label="Special tokens to keep",
                info="Special tokens to keep in the attribution. If empty, all special tokens are ignored.",
                value=None,
                multiselect=True,
                allow_custom_value=True,
            )

        gr.Markdown("## βš™οΈ Generation Parameters")
        with gr.Row(equal_height=True):
            output_current_text = gr.Textbox(
                label="Generation output",
                info="Specifies an output to force-decoded during generation. If blank, the model will generate freely.",
                interactive=True,
            )
            output_context_text = gr.Textbox(
                label="Generation context",
                info="If specified, this context is used as starting point for generation. Useful for e.g. chain-of-thought reasoning.",
                interactive=True,
            )
        generation_kwargs = gr.Code(
            value="{}",
            language="json",
            label="Generation kwargs",
            interactive=True,
            lines=1,
        )
        gr.Markdown("## βš™οΈ Other Parameters")
        with gr.Row(equal_height=True):
            model_kwargs = gr.Code(
                value="{}",
                language="json",
                label="Model kwargs",
                interactive=True,
                lines=1,
            )
            tokenizer_kwargs = gr.Code(
                value="{}",
                language="json",
                label="Tokenizer kwargs",
                interactive=True,
                lines=1,
            )
            attribution_kwargs = gr.Code(
                value="{}",
                language="json",
                label="Attribution kwargs",
                interactive=True,
                lines=1,
            )

    gr.Markdown(how_it_works)
    gr.Markdown(how_to_use)
    gr.Markdown(citation)

    attribute_input_button.click(
        pecore,
        inputs=[
            input_current_text,
            input_context_text,
            output_current_text,
            output_context_text,
            model_name_or_path,
            attribution_method,
            attributed_fn,
            context_sensitivity_metric,
            context_sensitivity_std_threshold,
            context_sensitivity_topk,
            attribution_std_threshold,
            attribution_topk,
            input_template,
            input_current_text_template,
            output_template,
            special_tokens_to_keep,
            model_kwargs,
            tokenizer_kwargs,
            generation_kwargs,
            attribution_kwargs,
        ],
        outputs=[
            pecore_output_highlights,
            download_output_file_button,
            download_output_html_button,
        ],
    )

demo.launch(allowed_paths=["outputs/"])