import os import random import base64 import gradio as gr from PIL import Image from gradio_client import Client import numpy as np from io import BytesIO DESCRIPTION = "# SDXL Texture" MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1024")) ENABLE_REFINER = os.getenv("ENABLE_REFINER", "1") == "1" def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: if randomize_seed: seed = random.randint(0, MAX_SEED) return seed def generate_normal_map(image): if not isinstance(image, Image.Image): image = Image.open(BytesIO(image)) # Convert image to grayscale grayscale = image.convert("L") grayscale_np = np.array(grayscale) # Compute gradients grad_x, grad_y = np.gradient(grayscale_np.astype(float)) # Normalize gradients grad_x = (grad_x - grad_x.min()) / (grad_x.max() - grad_x.min()) grad_y = (grad_y - grad_y.min()) / (grad_y.max() - grad_y.min()) # Create normal map normal_map = np.dstack((grad_x, grad_y, np.ones_like(grad_x))) normal_map = (normal_map * 255).astype(np.uint8) return Image.fromarray(normal_map) def generate_image( prompt: str, additional_prompt: str = "", negative_prompt: str = "", use_negative_prompt: bool = False, seed: int = 0, width: int = 1024, height: int = 1024, guidance_scale_base: float = 5.0, guidance_scale_refiner: float = 5.0, num_inference_steps_base: int = 25, num_inference_steps_refiner: int = 25, apply_refiner: bool = False, ): if additional_prompt != "": additional_prompt += ", " client = Client("hysts/SDXL") image = client.predict( prompt=additional_prompt+prompt, negative_prompt=negative_prompt, prompt_2="", negative_prompt_2="", use_negative_prompt=use_negative_prompt, use_prompt_2=False, use_negative_prompt_2=False, seed=seed, width=width, height=height, guidance_scale_base=guidance_scale_base, guidance_scale_refiner=guidance_scale_refiner, num_inference_steps_base=num_inference_steps_base, num_inference_steps_refiner=num_inference_steps_refiner, apply_refiner=apply_refiner, api_name="/run", ) normal_map = generate_normal_map(Image.open(image)) return image, normal_map examples = [ "A texture of grey wood, close-up, high contrast", "A 4K texture of cobblestone, sharp rocks, hd material", "A texture of white marble, light grey, seamless", ] with gr.Blocks(css="style.css") as demo: gr.Markdown(DESCRIPTION) with gr.Group(): with gr.Row(): prompt = gr.Textbox( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) with gr.Row(): result_image = gr.Image(label="Texture", show_label=True) result_normal = gr.Image(label="Normal", show_label=True) with gr.Accordion("Advanced options", open=False): use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True) negative_prompt = gr.Textbox( label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", visible=True, value="anatomy, text, logos, faces, animals, recognizable objects, cube, sphere, human, hands", ) additional_prompt = gr.Textbox( label="Additional prompt", max_lines=1, placeholder="Enter an additional prompt", visible=True, value="((Seamless texture)), versatile pattern, high resolution, detailed design, subtle patterns, non-repetitive, smooth edges, square", ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) apply_refiner = gr.Checkbox(label="Apply refiner", value=False, visible=ENABLE_REFINER) with gr.Row(): guidance_scale_base = gr.Slider( label="Guidance scale for base", minimum=1, maximum=20, step=0.1, value=5.0, ) num_inference_steps_base = gr.Slider( label="Number of inference steps for base", minimum=10, maximum=100, step=1, value=25, ) with gr.Row(visible=False) as refiner_params: guidance_scale_refiner = gr.Slider( label="Guidance scale for refiner", minimum=1, maximum=20, step=0.1, value=5.0, ) num_inference_steps_refiner = gr.Slider( label="Number of inference steps for refiner", minimum=10, maximum=100, step=1, value=25, ) gr.Examples( examples=examples, inputs=prompt, outputs=[result_image, result_normal], fn=generate_image, ) use_negative_prompt.change( fn=lambda x: gr.update(visible=x), inputs=use_negative_prompt, outputs=negative_prompt, queue=False, api_name=False, ) apply_refiner.change( fn=lambda x: gr.update(visible=x), inputs=apply_refiner, outputs=refiner_params, queue=False, api_name=False, ) gr.on( triggers=[ prompt.submit, additional_prompt.submit, negative_prompt.submit, run_button.click, ], fn=randomize_seed_fn, inputs=[seed, randomize_seed], outputs=seed, queue=False, api_name=False, ).then( fn=generate_image, inputs=[ prompt, additional_prompt, negative_prompt, use_negative_prompt, seed, width, height, guidance_scale_base, guidance_scale_refiner, num_inference_steps_base, num_inference_steps_refiner, apply_refiner, ], outputs=[result_image, result_normal], api_name="run", ) if __name__ == "__main__": demo.queue(max_size=20).launch()