File size: 6,067 Bytes
3bddc3f bc91045 3bddc3f 4b286f3 3bddc3f bc91045 3bddc3f 6acf91d 3bddc3f 4b286f3 3bddc3f bc91045 3bddc3f bc91045 3bddc3f 6acf91d aa07a0a 6acf91d 4b286f3 bc91045 3bddc3f bc91045 3bddc3f bc91045 4b286f3 bc91045 3bddc3f 45e1616 bc91045 6acf91d 3bddc3f bc91045 39cf431 bc91045 3bddc3f 4b286f3 bc91045 4b286f3 bc91045 3bddc3f 4b286f3 bc91045 4b286f3 3bddc3f bc91045 4b286f3 bc91045 4b286f3 bc91045 3bddc3f bc91045 4b286f3 bc91045 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
import logging
import os
import re
import warnings
import gradio as gr
import requests
import torch
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
from templates import starting_app_code, update_iframe_js, copy_snippet_js, download_code_js, load_js
# Filter the UserWarning raised by the audio component.
warnings.filterwarnings("ignore", message='Trying to convert audio automatically from int32 to 16-bit int format')
logging.basicConfig(
level=logging.INFO, # Set the logging level to INFO or any other desired level
format="%(asctime)s - %(message)s", # Define the log message format
datefmt="%Y-%m-%d %H:%M:%S", # Define the timestamp format
)
logger = logging.getLogger("my_logger")
HF_TOKEN = os.getenv("HF_TOKEN")
if not HF_TOKEN:
raise Exception("HF_TOKEN environment variable is required to call remote API.")
API_URL = "https://api-inference.huggingface.co/models/HuggingFaceH4/zephyr-7b-beta"
headers = {"Authorization": f"Bearer {HF_TOKEN}"}
def init_speech_to_text_model():
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model_id = "distil-whisper/distil-medium.en"
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
)
model.to(device)
processor = AutoProcessor.from_pretrained(model_id)
return pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
max_new_tokens=128,
torch_dtype=torch_dtype,
device=device,
)
whisper_pipe = init_speech_to_text_model()
code_pattern = re.compile(r'```python\n(.*?)```', re.DOTALL)
def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
def generate_text(code, prompt):
logger.info(f"Calling API with prompt:\n{prompt}")
prompt = f"```python\n{code}```\nGiven the code above return only updated code for the following request:\n{prompt}\n<|assistant|>"
params = {"max_new_tokens": 512}
output = query({
"inputs": prompt,
"parameters": params,
})
if 'error' in output:
logger.warning(f'Language model call failed: {output["error"]}')
raise gr.Warning(f'Language model call failed: {output["error"]}')
logger.info(f'API RESPONSE\n{output[0]["generated_text"]}')
assistant_reply = output[0]["generated_text"].split('<|assistant|>')[1]
match = re.search(code_pattern, assistant_reply)
if not match:
return assistant_reply, code, None
new_code = match.group(1)
logger.info(f'NEW CODE:\nnew_code')
return assistant_reply, new_code, None
def transcribe(audio):
result = whisper_pipe(audio)
return result["text"], None
def copy_notify(code):
gr.Info("App code snippet copied!")
with gr.Blocks() as demo:
gr.Markdown("<h1 align=\"center\">KiteWind πͺπ</h1>")
gr.Markdown(
"<h4 align=\"center\">Chat-assisted web app creator by <a href=\"https://huggingface.co/gstaff\">@gstaff</a></h4>")
with gr.Row():
with gr.Column():
gr.Markdown("## 1. Run your app in the browser!")
html = gr.HTML(value='<div id="gradioDemoDiv"></div>')
gr.Markdown("## 2. Customize using voice requests!")
with gr.Row():
with gr.Column():
with gr.Group():
in_audio = gr.Audio(label="Record a voice request", source='microphone', type='filepath')
in_prompt = gr.Textbox(label="Or type a text request and press Enter",
placeholder="Need an idea? Try one of these:\n- Add a button to reverse the name\n- Change the greeting to Hola\n- Put the reversed name output into a separate textbox\n- Change the theme from monochrome to soft")
out_text = gr.TextArea(label="Chat Assistant Response")
clear = gr.ClearButton([in_prompt, in_audio, out_text])
with gr.Column():
code_area = gr.Code(label="App Code - You can also edit directly and then click Update App",
language='python', value=starting_app_code('gradio-lite'))
update_btn = gr.Button("Update App", variant="primary")
code_update_params = {'fn': None, 'inputs': code_area, 'outputs': None,
'_js': update_iframe_js('gradio-lite')}
gen_text_params = {'fn': generate_text, 'inputs': [code_area, in_prompt], 'outputs': [out_text, code_area]}
transcribe_params = {'fn': transcribe, 'inputs': [in_audio], 'outputs': [in_prompt, in_audio]}
update_btn.click(**code_update_params)
in_prompt.submit(**gen_text_params).then(**code_update_params)
in_audio.stop_recording(**transcribe_params).then(**gen_text_params).then(**code_update_params)
with gr.Row():
with gr.Column():
gr.Markdown("## 3. Export your app to share!")
copy_snippet_btn = gr.Button("Copy app snippet to paste in another page")
copy_snippet_btn.click(copy_notify, code_area, None, _js=copy_snippet_js('gradio-lite'))
download_btn = gr.Button("Download app as a standalone file")
download_btn.click(None, code_area, None, _js=download_code_js('gradio-lite'))
with gr.Row():
with gr.Column():
gr.Markdown("## Current limitations")
with gr.Accordion("Click to view", open=False):
gr.Markdown(
"- Only gradio-lite apps using the python standard libraries and gradio are supported\n- The chat hasn't been tuned on gradio library data; it may make mistakes\n- The app needs to fully reload each time it is changed")
demo.load(None, None, None, _js=load_js('gradio-lite'))
demo.css = "footer {visibility: hidden}"
if __name__ == "__main__":
demo.queue().launch()
|