import os from pathlib import Path import gradio as gr import re import torch from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline import requests HF_TOKEN = os.getenv("HF_TOKEN") API_URL = "https://api-inference.huggingface.co/models/HuggingFaceH4/zephyr-7b-beta" headers = {"Authorization": f"Bearer {HF_TOKEN}"} def init_speech_to_text_model(): device = "cuda:0" if torch.cuda.is_available() else "cpu" torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 model_id = "distil-whisper/distil-medium.en" model = AutoModelForSpeechSeq2Seq.from_pretrained( model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True ) model.to(device) processor = AutoProcessor.from_pretrained(model_id) return pipeline( "automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, torch_dtype=torch_dtype, device=device, ) whisper_pipe = init_speech_to_text_model() code_pattern = r'```python\n(.*?)```' starting_app_code = """import gradio as gr def greet(name): return "Hello " + name + "!" with gr.Blocks(theme="monochrome") as demo: name = gr.Textbox(label="Name", value="World") output = gr.Textbox(label="Output Box") greet_btn = gr.Button("Greet") greet_btn.click(fn=greet, inputs=name, outputs=output) name.submit(fn=greet, inputs=name, outputs=output) if __name__ == "__main__": demo.css = "footer {visibility: hidden}" demo.launch() """ html_template = Path('gradio-lite-playground.html').read_text() pattern = r"# APP CODE START(.*?)# APP CODE END" load_js = f"""() => {{ const htmlString = ''; const parser = new DOMParser(); const doc = parser.parseFromString(htmlString, 'text/html'); const iframe = doc.querySelector('.my-frame'); const div = document.getElementById('demoDiv'); div.appendChild(iframe); const frame = document.querySelector('.my-frame'); frame.contentWindow.document.open('text/html', 'replace'); frame.contentWindow.document.write(`{html_template}`); frame.contentWindow.document.close(); }}""" # TODO: Works but is inefficient because the iframe has to be reloaded each time update_iframe_js = f"""(code) => {{ console.log(`UPDATING CODE`); console.log(code) const pattern = /# APP CODE START(.*?)# APP CODE END/gs; const template = `{html_template}`; const completedTemplate = template.replace(pattern, code); console.log(completedTemplate); const oldFrame = document.querySelector('.my-frame'); oldFrame.remove(); const htmlString = ''; const parser = new DOMParser(); const doc = parser.parseFromString(htmlString, 'text/html'); const iframe = doc.querySelector('.my-frame'); const div = document.getElementById('demoDiv'); div.appendChild(iframe); const frame = document.querySelector('.my-frame'); frame.contentWindow.document.open('text/html', 'replace'); frame.contentWindow.document.write(completedTemplate); frame.contentWindow.document.close(); console.log(`UPDATE DONE`); }}""" copy_snippet_js = f"""async (code) => {{ console.log(`DOWNLOADING CODE`); const pattern = /# APP CODE START(.*?)# APP CODE END/gs; const template = `
\n \n# APP CODE START\n\n# APP CODE END\n\n
\n`; // Step 1: Generate the HTML content const completedTemplate = template.replace(pattern, code); const snippet = completedTemplate; console.log(snippet); await navigator.clipboard.writeText(snippet); console.log(`COPY DONE`); }}""" download_code_js = f"""(code) => {{ console.log(`DOWNLOADING CODE`); const pattern = /# APP CODE START(.*?)# APP CODE END/gs; const template = `{html_template}`; // Step 1: Generate the HTML content const completedTemplate = template.replace(pattern, code); // Step 2: Create a Blob from the HTML content const blob = new Blob([completedTemplate], {{ type: "text/html" }}); // Step 3: Create a URL for the Blob const url = URL.createObjectURL(blob); // Step 4: Create a download link const downloadLink = document.createElement("a"); downloadLink.href = url; downloadLink.download = "gradio-lite-app.html"; // Specify the filename for the download // Step 5: Trigger a click event on the download link downloadLink.click(); // Clean up by revoking the URL URL.revokeObjectURL(url); console.log(`DOWNLOAD DONE`); }}""" def query(payload): response = requests.post(API_URL, headers=headers, json=payload) return response.json() def generate_text(code, prompt): print(f"Calling API with prompt:\n{prompt}") prompt = f"```python\n{code}```\nGiven the code above return only updated code for the following request:\n{prompt}\n<|assistant|>" params = {"max_new_tokens": 512} output = query({ "inputs": prompt, "parameters": params, }) print(f'API RESPONSE\n{output[0]["generated_text"]}') assistant_reply = output[0]["generated_text"].split('<|assistant|>')[1] match = re.search(code_pattern, assistant_reply, re.DOTALL) new_code = match.group(1) print(new_code) # TODO: error handling here return assistant_reply, new_code, None def transcribe(audio): result = whisper_pipe(audio) return result["text"] def copy_notify(code): gr.Info("App code snippet copied!") with gr.Blocks() as demo: gr.Markdown("

KiteWind 🪁🍃

") gr.Markdown("

Chat-assisted web app creator by @gstaff

") with gr.Row(): with gr.Column(): gr.Markdown("## 1. Run your app in the browser!") html = gr.HTML(value='
') gr.Markdown("## 2. Customize using voice requests!") with gr.Row(): with gr.Column(): with gr.Group(): in_audio = gr.Audio(label="Record a voice request", source='microphone', type='filepath') in_prompt = gr.Textbox(label="Or type a text request and press Enter", placeholder="Need an idea? Try one of these:\n- Add a button to reverse the name\n- Change the greeting to Hola\n- Put the reversed name output into a separate textbox\n- Change the theme from monochrome to soft") out_text = gr.TextArea(label="Chat Assistant Response") clear = gr.ClearButton([in_prompt, in_audio, out_text]) with gr.Column(): code_area = gr.Code(label="App Code - You can also edit directly and then click Update App", language='python', value=starting_app_code) update_btn = gr.Button("Update App", variant="primary") update_btn.click(None, inputs=code_area, outputs=None, _js=update_iframe_js) in_prompt.submit(generate_text, [code_area, in_prompt], [out_text, code_area, in_audio]).then(None, inputs=code_area, outputs=None, _js=update_iframe_js) in_audio.stop_recording(transcribe, [in_audio], [in_prompt]).then(generate_text, [code_area, in_prompt], [out_text, code_area, in_audio]).then(None, inputs=code_area, outputs=None, _js=update_iframe_js) with gr.Row(): with gr.Column(): gr.Markdown("## 3. Export your app to share!") copy_snippet_btn = gr.Button("Copy app snippet to paste in another page") copy_snippet_btn.click(copy_notify, code_area, None, _js=copy_snippet_js) download_btn = gr.Button("Download app as a standalone file") download_btn.click(None, code_area, None, _js=download_code_js) with gr.Row(): with gr.Column(): gr.Markdown("## Current limitations") with gr.Accordion("Click to view", open=False): gr.Markdown("- Only gradio-lite apps using the python standard libraries and gradio are supported\n- The chat hasn't been tuned on gradio library data; it may make mistakes\n- The app needs to fully reload each time it is changed") demo.load(None, None, None, _js=load_js) demo.css = "footer {visibility: hidden}" if __name__ == "__main__": demo.queue().launch()